Bernstein Sets Are Baire Spaces

A topological space X is a Baire space if the intersection of any countable family of open and dense sets in X is dense in X (or equivalently, every nonempty open subset of X is of second category in X). One version of the Baire category theorem implies that every complete metric space is a Baire space. The real line \mathbb{R} with the usual Euclidean metric \lvert x-y \lvert is a complete metric space, and hence is a Baire space. The space of irrational numbers \mathbb{P} is also a complete metric space (not with the usual metric \lvert x-y \lvert but with another suitable metric that generates the Euclidean topology on \mathbb{P}) and hence is also a Baire space. In this post, we show that there are subsets of the real line that are Baire space but not complete metric spaces. These sets are called Bernstein sets.

A Bernstein set, as discussed here, is a subset B of the real line such that both B and \mathbb{R}-B intersect with every uncountable closed subset of the real line. We present an algorithm on how to generate such a set. Bernstein sets are not Lebesgue measurable. Our goal here is to show that Bernstein sets are Baire spaces but not weakly \alpha-favorable, and hence are spaces in which the Banach-Mazur game is undecidable.

Baire spaces are defined and discussed in this post. The Banach-Mazur game is discussed in this post. The algorithm of constructing Bernstein set is found in [2] (Theorem 5.3 in p. 23). Good references for basic terms are [1] and [3].
____________________________________________________________________________

In constructing Bernstein sets, we need the following lemmas.

Lemma 1
In the real line \mathbb{R}, any uncountable closed set has cardinality continuum.

Proof
In the real line, every uncountable subset of the real line has a limit point. In fact every uncountable subset of the real line contains at least one of its limit points (see The Lindelof property of the real line). Let A \subset \mathbb{R} be an uncountable closed set. The set A has to contain at least one of its limit point. As a result, at most countably many points of A are not limit points of A. Take away these countably many points of A that are not limit points of A and call the remainder A^*. The set A^* is still an uncountable closed set but with an additional property that every point of A^* is a limit point of A^*. Such a set is called a perfect set. In Perfect sets and Cantor sets, II, we demonstrate a procedure for constructing a Cantor set out of any nonempty perfect set. Thus A^* (and hence A) contains a Cantor set and has cardinality continuum. \blacksquare

Lemma 2
In the real line \mathbb{R}, there are continuum many uncountable closed subsets.

Proof
Let \mathcal{B} be the set of all open intervals with rational endpoints, which is a countable set. The set \mathcal{B} is a base for the usual topology on \mathbb{R}. Thus every nonempty open subset of the real line is the union of some subcollection of \mathcal{B}. So there are at most continuum many open sets in \mathbb{R}. Thus there are at most continuum many closed sets in \mathbb{R}. On the other hand, there are at least continuum many uncountable closed sets (e.g. [-b,b] for b \in \mathbb{R}). Thus we can say that there are exactly continuum many uncountable closed subsets of the real line. \blacksquare

Constructing Bernstein Sets

Let c denote the cardinality of the real line \mathbb{R}. By Lemma 2, there are only c many uncountable closed subsets of the real line. So we can well order all uncountable closed subsets of \mathbb{R} in a collection indexed by the ordinals less than c, say \left\{F_\alpha: \alpha < c \right\}. By Lemma 1, each F_\alpha has cardinality c. Well order the real line \mathbb{R}. Let \prec be this well ordering.

Based on the well ordering \prec, let x_0 and y_0 be the first two elements of F_0. Let x_1 and y_1 be the first two elements of F_1 (based on \prec) that are different from x_0 and y_0. Suppose that \alpha < c and that for each \beta < \alpha, points x_\beta and y_\beta have been selected. Then F_\alpha-\bigcup_{\beta<\alpha} \left\{x_\beta,y_\beta \right\} is nonempty since F_\alpha has cardinality c and only less than c many points have been selected. Then let x_\alpha and y_\alpha be the first two points of F_\alpha-\bigcup_{\beta<\alpha} \left\{x_\beta,y_\beta \right\} (according to \prec). Thus x_\alpha and y_\alpha can be chosen for each \alpha<c.

Let B=\left\{ x_\alpha: \alpha<c \right\}. Then B is a Bernstein set. Note that B meets every uncountable closed set F_\alpha with the point x_\alpha and the complement of B meets every uncountable closed set F_\alpha with the point y_\alpha.

The algorithm described here produces a unique Bernstein set that depends on the ordering of the uncountable closed sets F_\alpha and the well ordering \prec of \mathbb{R}.

____________________________________________________________________________

Key Lemmas

Baire spaces are defined and discussed in this previous post. Baire spaces can also be characterized using the Banach-Mazur game. The following lemmas establish that any Bernstein is a Baire space that is not weakly \alpha-favorable. Lemma 3 is applicable to all topological spaces. Lemmas 4, 5, 6, and 7 are specific to the real line.

Lemma 3
Let Y be a topological space. Let F \subset Y be a set of first category in Y. Then Y-F contains a dense G_\delta subset.

Proof
Let F \subset Y be a set of first category in Y. Then F=\bigcup \limits_{n=0}^\infty F_n where each F_n is nowhere dense in Y. The set X-\bigcup \limits_{n=0}^\infty \overline{F_n} is a dense G_\delta set in the space X and it is contained in the complement of F. We have:

\displaystyle . \ \ \ \ \ X-\bigcup \limits_{n=0}^\infty \overline{F_n} \subset X-F \blacksquare

We now set up some notaions in preparation of proving Lemma 4 and Lemma 7. For any set A \subset \mathbb{R}, let \text{int}(A) be the interior of the set A. Denote each positive integer n by n=\left\{0,1,\cdots,n-1 \right\}. In particular, 2=\left\{0,1\right\}. Let 2^{n} denote the collection of all functions f: n \rightarrow 2. Identify each f \in 2^n by the sequence f(0),f(1),\cdots,f(n-1). This identification makes notations in the proofs of Lemma 4 and Lemma 7 easier to follow. For example, for f \in 2^n, I_f denotes a closed interval I_{f(0),f(1),\cdots,f(n-1)}. When we choose two disjoint subintervals of this interval, they are denoted by I_{f,0} and I_{f,1}. For f \in 2^n, f \upharpoonright 1 refers to f(0), f \upharpoonright 2 refers to the sequence f(0),f(1), and f \upharpoonright 3 refers to the sequence f(0),f(1),f(2) and so on.

The Greek letter \omega denotes the first infinite ordinal. We equate it as the set of all nonnegative integers \left\{0,1,2,\cdots \right\}. Let 2^\omega denote the set of all functions from \omega to 2=\left\{0,1 \right\}.

Lemma 4
Let W \subset \mathbb{R} be a dense G_\delta set. Let U be a nonempty open subset of \mathbb{R}. Then W \cap U contains a Cantor set (hence an uncountable closed subset of the real line).

Proof
Let W=\bigcap \limits_{n=0}^\infty O_n where each O_n is an open and dense subset of \mathbb{R}. We describe how a Cantor set can be obtained from the open sets O_n. Take a closed interval I_\varnothing=[a,b] \subset O_0 \cap U. Let C_0=I_\varnothing. Then pick two disjoint closed intervals I_{0} \subset O_1 and I_{1} \subset O_1 such that they are subsets of the interior of I_\varnothing and such that the lengths of both intervals are less than 2^{-1}. Let C_1=I_0 \cup I_1.

At the n^{th} step, suppose that all closed intervals I_{f(0),f(1),\cdots,f(n-1)} (for all f \in 2^n) are chosen. For each such interval, we pick two disjoint closed intervals I_{f,0}=I_{f(0),f(1),\cdots,f(n-1),0} and I_{f,1}=I_{f(0),f(1),\cdots,f(n-1),1} such that each one is subset of O_n and each one is subset of the interior of the previous closed interval I_{f(0),f(1),\cdots,f(n-1)} and such that the lenght of each one is less than 2^{-n}. Let C_n be the union of I_{f,0} \cup I_{f,1} over all f \in 2^n.

Then C=\bigcap \limits_{j=0}^\infty C_j is a Cantor set that is contained in W \cap U. \blacksquare

Lemma 5
Let X \subset \mathbb{R}. If X is not of second category in \mathbb{R}, then \mathbb{R}-X contains an uncountable closed subset of \mathbb{R}.

Proof
Suppose X is of first category in \mathbb{R}. By Lemma 3, the complement of X contains a dense G_\delta subset. By Lemma 4, the complement contains a Cantor set (hence an uncountable closed set). \blacksquare

Lemma 6
Let X \subset \mathbb{R}. If X is not a Baire space, then \mathbb{R}-X contains an uncountable closed subset of \mathbb{R}.

Proof
Suppose X \subset \mathbb{R} is not a Baire space. Then there exists some open set U \subset X such that U is of first category in X. Let U^* be an open subset of \mathbb{R} such that U^* \cap X=U. We have U=\bigcup \limits_{n=0}^\infty F_n where each F_n is nowhere dense in X. It follows that each F_n is nowhere dense in \mathbb{R} too.

By Lemma 3, \mathbb{R}-U contains W, a dense G_\delta subset of \mathbb{R}. By Lemma 4, there is a Cantor set C contained in W \cap U^*. This uncountable closed set C is contained in \mathbb{R}-X. \blacksquare

Lemma 7
Let X \subset \mathbb{R}. Suppose that X is a weakly \alpha-favorable space. If X is dense in the open interval (a,b), then there is an uncountable closed subset C of \mathbb{R} such that C \subset X \cap (a,b).

Proof
Suppose X is a weakly \alpha-favorable space. Let \gamma be a winning strategy for player \alpha in the Banach-Mazur game BM(X,\beta). Let (a,b) be an open interval in which X is dense. We show that a Cantor set can be found inside X \cap (a,b) by using the winning strategy \gamma.

Let I_{-1}=[a,b]. Let t=b-a. Let U_{-1}^*=(a,b) and U_{-1}=U^* \cap X. We take U_{-1} as the first move by the player \beta. Then the response made by \alpha is V_{-1}=\gamma(U_{-1}). Let C_{-1}=I_{-1}.

Choose two disjoint closed intervals I_0 and I_1 that are subsets of the interior of I_{-1} such that the lengths of these two intervals are less than 2^{-t} and such that U_0^*=\text{int}(I_0) and U_1^*=\text{int}(I_1) satisfy further properties, which are that U_0=U_0^* \cap X \subset V_{-1} and U_1=U_1^* \cap X \subset V_{-1} are open in X. Let U_0 and U_1 be two possible moves by player \beta at the next stage. Then the two possible responses by \alpha are V_0=\gamma(U_{-1},U_0) and V_1=\gamma(U_{-1},U_1). Let C_1=I_0 \cup I_1.

At the n^{th} step, suppose that for each f \in 2^n, disjoint closed interval I_f=I_{f(0),\cdots,f(n-1)} have been chosen. Then for each f \in 2^n, we choose two disjoint closed intervals I_{f,0} and I_{f,1}, both subsets of the interior of I_f, such that the lengths are less than 2^{-(n+1) t}, and:

  • U_{f,0}^*=\text{int}(I_{f,0}) and U_{f,1}^*=\text{int}(I_{f,1}),
  • U_{f,0}=U_{f,0}^* \cap X and U_{f,1}=U_{f,1}^* \cap X are open in X,
  • U_{f,0} \subset V_f and U_{f,1} \subset V_f

We take U_{f,0} and U_{f,1} as two possible new moves by player \beta from the path f \in 2^n. Then let the following be the responses by player \alpha:

  • V_{f,0}=\gamma(U_{-1},U_{f \upharpoonright 1}, U_{f \upharpoonright 2}, \cdots,U_{f \upharpoonright (n-1)},U_f, U_{f,0})
  • V_{f,1}=\gamma(U_{-1},U_{f \upharpoonright 1}, U_{f \upharpoonright 2}, \cdots,U_{f \upharpoonright (n-1)},U_f, U_{f,1})

The remaining task in the n^{th} induction step is to set C_n=\bigcup \limits_{f \in 2^n} I_{f,0} \cup I_{f,1}.

Let C=\bigcap \limits_{n=-1}^\infty C_n, which is a Cantor set, hence an uncountable subset of the real line. We claim that C \subset X.

Let x \in C. There there is some g \in 2^\omega such that \left\{ x \right\} = \bigcap \limits_{n=1}^\infty I_{g \upharpoonright n}. The closed intervals I_{g \upharpoonright n} are associated with a play of the Banach-Mazur game on X. Let the following sequence denote this play:

\displaystyle (1) \ \ \ \ \ U_{-1},V_{-1},U_{g \upharpoonright 1},V_{g \upharpoonright 1},U_{g \upharpoonright 2},V_{g \upharpoonright 2},U_{g \upharpoonright 3},U_{g \upharpoonright 3}, \cdots

Since the strategy \gamma is a winning strategy for player \alpha, the intersection of the open sets in (1) must be nonempty. Thus \bigcap \limits_{n=1}^\infty V_{g \upharpoonright n} \ne \varnothing.

Since the sets V_{g \upharpoonright n} \subset I_{g \upharpoonright n}, and since the lengths of I_{g \upharpoonright n} go to zero, the intersection must have only one point, i.e., \bigcap \limits_{n=1}^\infty V_{g \upharpoonright n} = \left\{ y \right\} for some y \in X. It also follows that y=x. Thus x \in X. We just completes the proof that X contains an uncountable closed subset of the real line. \blacksquare

____________________________________________________________________________

Conclusions about Bernstein Sets

Lemma 6 above establishes that any Bernstein set is a Baire space (if it isn’t, the complement would contain an uncountable closed set). Lemma 7 establishes that any Bernstein set is a topological space in which the player \alpha has no winning strategy in the Banach-Mazur game (if player \alpha always wins in a Bernstein set, it would contain an uncountable closed set). Thus any Bernstein set cannot be a weakly \alpha favorable space. According to this previous post about the Banach-Mazur game, Baire spaces are characterized as the spaces in which the player \beta has no winning strategy in the Banach-Mazur game. Thus any Bernstein set in a topological space in which the Banach-Mazur game is undecidable (i.e. both players in the Banach-Mazur game have no winning strategy).

One interesting observation about Lemma 6 and Lemma 7. Lemma 6 (as well as Lemma 5) indicates that the complement of a “thin” set contains a Cantor set. On the other hand, Lemma 7 indicates that a “thick” set contains a Cantor set (if it is dense in some open interval).

Reference

  1. Engelking, R., General Topology, Revised and Completed edition, Heldermann Verlag, Berlin, 1989.
  2. Oxtoby, J. C., Measure and Category, Graduate Texts in Mathematics, Springer-Verlag, New York, 1971.
  3. Willard, S., General Topology, Addison-Wesley Publishing Company, 1970.
Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s