# Normal dense subspaces of a product of “continuum” many separable metric factors

Is every normal dense subspace of a product of separable metric spaces collectionwise normal? This question was posed by Arkhangelskii in [1] (see Problem I.5.25). A partial positive answer is provided by a theorem that is usually attributed to Corson: If $Y$ is a normal dense subspace of a product of separable metric spaces and if $Y \times Y$ is also normal, then $Y$ is collectionwise normal. In this post, using a simple combinatorial argument, we show that any normal dense subspace of a product of continuum many separable metric space is collectionwise normal (see Corollary 4 below), which is a corollary of the following theorem.

Theorem 1
Let $X$ be a normal space with character $\le 2^\omega$. If $2^\omega<2^{\omega_1}$, then the following holds:

• If $Y$ is a closed and discrete subspace of $X$ with $\lvert Y \lvert=\omega_1$, then $Y$ contains a separated subset of cardinality $\omega_1$.

Theorem 1 gives the corollary indicated at the beginning and several other interesting results. The statement $2^\omega<2^{\omega_1}$ means that the cardinality of the power set (the set of all subsets) of $\omega$ is strictly less than the cardinality of the power set of $\omega_1$. Note that the statement $2^\omega<2^{\omega_1}$ follows from the continuum hypothesis (CH), the statement that $2^\omega=\omega_1$. With the assumption $2^\omega<2^{\omega_1}$, Theorem 1 is a theorem that goes beyond ZFC. We also present an alternative to Theorem 1 that removes the assumption $2^\omega<2^{\omega_1}$ (see Theorem 6 below).

A subset $T$ of a space $S$ is a separated set (in $S$) if for each $t \in T$, there is an open subset $O_t$ of $S$ with $t \in O_t$ such that $\left\{O_t: t \in T \right\}$ is a pairwise disjoint collection. First we prove Theorem 1 and then discuss the corollaries.

____________________________________________________________________

Proof of Theorem 1

Suppose $Y$ is a closed and discrete subset of $X$ with $\lvert Y \lvert=\omega_1$ such that no subset of $Y$ of cardinality $\omega_1$ can be separated. We then show that $2^{\omega_1} \le 2^{\omega}$.

For each $y \in Y$, let $\mathcal{B}_y$ be a local base at the point $y$ such that $\lvert \mathcal{B}_y \lvert \le 2^\omega$. Let $\mathcal{B}=\bigcup_{y \in Y} \mathcal{B}_y$. Thus $\lvert \mathcal{B} \lvert \le 2^\omega$. By normality, for each $W \subset Y$, let $U_W$ be an open subset of $X$ such that $W \subset U_W$ and $\overline{U_W} \cap (Y-W)=\varnothing$. For each $W \subset Y$, consider the following collection of open sets:

$\mathcal{G}_W=\left\{V \in \mathcal{B}_y: y \in W \text{ and } V \subset U_W \right\}$

For each $W \subset Y$, choose a maximal disjoint collection $\mathcal{M}_W$ of open sets in $\mathcal{G}_W$. Because no subset of $Y$ of cardinality $\omega_1$ can be separated, each $\mathcal{M}_W$ is countable. If $W_1 \ne W_2$, then $\mathcal{M}_{W_1} \ne \mathcal{M}_{W_2}$.

Let $\mathcal{P}(Y)$ be the power set (i.e. the set of all subsets) of $Y$. Let $\mathcal{P}_\omega(\mathcal{B})$ be the set of all countable subsets of $\mathcal{B}$. Then the mapping $W \mapsto \mathcal{M}_W$ is a one-to-one map from $\mathcal{P}(Y)$ into $\mathcal{P}_\omega(\mathcal{B})$. Note that $\lvert \mathcal{P}(Y) \lvert=2^{\omega_1}$. Also note that since $\lvert \mathcal{B} \lvert \le 2^\omega$, $\lvert \mathcal{P}_\omega(\mathcal{B}) \lvert \le 2^\omega$. Thus $2^{\omega_1} \le 2^{\omega}$. $\blacksquare$

____________________________________________________________________

Some Corollaries of Theorem 1

Here’s some corollaries that follow easily from Theorem 1. A space $X$ has the countable chain condition (CCC) if every pairwise disjoint collection of non-empty open subset of $X$ is countable. For convenience, if $X$ has the CCC, we say $X$ is CCC. The following corollaries make use of the fact that any normal space with countable extent is collectionwise normal (see Theorem 2 in this previous post).

Corollary 2
Let $X$ be a CCC space with character $\le 2^\omega$. If $2^\omega<2^{\omega_1}$, then the following conditions hold:

• If $X$ is normal, then every closed and discrete subset of $X$ is countable, i.e., $X$ has countable extent.
• If $X$ is normal, then $X$ is collectionwise normal.

Corollary 3
Let $X$ be a CCC space with character $\le 2^\omega$. If CH holds, then the following conditions hold:

• If $X$ is normal, then every closed and discrete subset of $X$ is countable, i.e., $X$ has countable extent.
• If $X$ is normal, then $X$ is collectionwise normal.

Corollary 4
Let $X=\prod_{\alpha<2^\omega} X_\alpha$ be a product where each factor $X_\alpha$ is a separable metric space. If $2^\omega<2^{\omega_1}$, then the following conditions hold:

• If $Y$ is a normal dense subspace of $X$, then $Y$ has countable extent.
• If $Y$ is a normal dense subspace of $X$, then $Y$ is collectionwise normal.

Corollary 4 is the result indicated in the title of the post. The product of separable spaces has the CCC. Thus the product space $X$ and any dense subspace of $X$ have the CCC. Because $X$ is a product of continuum many separable metric spaces, $X$ and any subspace of $X$ have characters $\le 2^\omega$. Then Corollary 4 follows from Corollary 2.

When dealing with the topic of normal versus collectionwise normal, it is hard to avoid the connection with the normal Moore space conjecture. Theorem 1 gives the result of F. B. Jones from 1937 (see [3]). We have the following theorem.

Theorem 5
If $2^\omega<2^{\omega_1}$, then every separable normal Moore space is metrizable.

Though this was not how Jones proved it in [3], Theorem 5 is a corollary of Corollary 2. By Corollary 2, any separable normal Moore space is collectionwise normal. It is well known that collectionwise normal Moore space is metrizable (Bing’s metrization theorem, see Theorem 5.4.1 in [2]).

____________________________________________________________________

A ZFC Theorem

We now prove a result that is similar to Corollary 2 but uses no set-theory beyond the Zermeloâ€“Fraenkel set theory plus axiom of choice (abbreviated by ZFC). Of course the conclusion is not as strong. Even though the assumption $2^\omega<2^{\omega_1}$ is removed in Theorem 6, note the similarity between the proof of Theorem 1 and the proof of Theorem 6.

Theorem 6
Let $X$ be a CCC space with character $\le 2^\omega$. Then the following conditions hold:

• If $X$ is normal, then every closed and discrete subset of $X$ has cardinality less than continuum.

Proof of Theorem 6
Let $X$ be a normal CCC space with character $\le 2^\omega$. Let $Y$ be a closed and discrete subset of $X$. We show that $\lvert Y \lvert < 2^\omega$. Suppose that $\lvert Y \lvert = 2^\omega$.

For each $y \in Y$, let $\mathcal{B}_y$ be a local base at the point $y$ such that $\lvert \mathcal{B}_y \lvert \le 2^\omega$. Let $\mathcal{B}=\bigcup_{y \in Y} \mathcal{B}_y$. Thus $\lvert \mathcal{B} \lvert = 2^\omega$. By normality, for each $W \subset Y$, let $U_W$ be an open subset of $X$ such that $W \subset U_W$ and $\overline{U_W} \cap (Y-W)=\varnothing$. For each $W \subset Y$, consider the following collection of open sets:

$\mathcal{G}_W=\left\{V \in \mathcal{B}_y: y \in W \text{ and } V \subset U_W \right\}$

For each $W \subset Y$, choose $\mathcal{M}_W \subset \mathcal{G}_W$ such that $\mathcal{M}_W$ is a maximal disjoint collection. Since $X$ is CCC, $\mathcal{M}_W$ is countable. It is clear that if $W_1 \ne W_2$, then $\mathcal{M}_{W_1} \ne \mathcal{M}_{W_2}$.

Let $\mathcal{P}(Y)$ be the power set (i.e. the set of all subsets) of $Y$. Let $\mathcal{P}_\omega(\mathcal{B})$ be the set of all countable subsets of $\mathcal{B}$. Then the mapping $W \mapsto \mathcal{M}_W$ is a one-to-one map from $\mathcal{P}(Y)$ into $\mathcal{P}_\omega(\mathcal{B})$. Note that since $\lvert \mathcal{B} \lvert = 2^\omega$, $\lvert \mathcal{P}_\omega(\mathcal{B}) \lvert = 2^\omega$. Thus $\lvert \mathcal{P}(Y) \lvert \le 2^{\omega}$. However, $Y$ is assumed to be of cardinality continuum. Then $\lvert \mathcal{P}(Y) \lvert>2^{\omega_1}$, leading to a contradiction. Thus it must be the case that $\lvert Y \lvert < 2^\omega$. $\blacksquare$

With Theorem 6, Corollary 3 still holds. Theorem 6 removes the set-theoretic assumption of $2^\omega<2^{\omega_1}$. As a result, the upper bound for cardinalities of closed and discrete sets is (at least potentially) higher.

____________________________________________________________________

Reference

1. Arkhangelskii, A. V., Topological Function Spaces, Mathematics and Its Applications Series, Kluwer Academic Publishers, Dordrecht, 1992.
2. Engelking, R., General Topology, Revised and Completed edition, Heldermann Verlag, Berlin, 1989.
3. Jones, F. B., Concerning normal and completely normal spaces, Bull. Amer. Math. Soc., 43, 671-677, 1937.

____________________________________________________________________

$\copyright \ 2014 \text{ by Dan Ma}$