(Lower case) sigma-products of separable metric spaces are Lindelof

Consider the product space $X=\prod_{\alpha \in A} X_\alpha$. Fix a point $b \in \prod_{\alpha \in A} X_\alpha$, called the base point. The $\Sigma$-product of the spaces $\left\{X_\alpha: \alpha \in A \right\}$ is the following subspace of the product space $X$:

$\Sigma_{\alpha \in A} X_\alpha=\left\{ x \in X: x_\alpha \ne b_\alpha \text{ for at most countably many } \alpha \in A \right\}$

In other words, the space $\Sigma_{\alpha \in A} X_\alpha$ is the subspace of the product space $X=\prod_{\alpha \in A} X_\alpha$ consisting of all points that deviate from the base point on at most countably many coordinates $\alpha \in A$. We also consider the following subspace of $\Sigma_{\alpha \in A} X_\alpha$.

$\sigma=\left\{ x \in \Sigma_{\alpha \in A} X_\alpha: x_\alpha \ne b_\alpha \text{ for at most finitely many } \alpha \in A \right\}$

For convenience , we call $\Sigma_{\alpha \in A} X_\alpha$ the (upper case) Sigma-product (or $\Sigma$-product) of the spaces $X_\alpha$ and we call the space $\sigma$ the (lower case) sigma-product (or $\sigma$-product). Clearly, the space $\sigma$ is a dense subspace of $\Sigma_{\alpha \in A} X_\alpha$. In a previous post, we show that the upper case Sigma-product of separable metric spaces is collectionwise normal. In this post, we show that the (lower case) sigma-product of separable metric spaces is Lindelof. Thus when each factor $X_\alpha$ is a separable metric space with at least two points, the $\Sigma$-product, though not Lindelof, has a dense Lindelof subspace. The (upper case) $\Sigma$-product of separable metric spaces is a handy example of a non-Lindelof space that contains a dense Lindelof subspace.

Naturally, the lower case sigma-product can be further broken down into countably many subspaces. For each integer $n=0,1,2,3,\cdots$, we define $\sigma_n$ as follows:

$\sigma_n=\left\{ x \in \sigma: x_\alpha \ne b_\alpha \text{ for at most } n \text{ many } \alpha \in A \right\}$

Clearly, $\sigma=\bigcup_{n=0}^\infty \sigma_n$. We prove the following theorem. The fact that $\sigma$ is Lindelof will follow as a corollary. Understanding the following proof for Theorem 1 is a matter of keeping straight the notations involving standard basic open sets in the product space $X=\prod_{\alpha \in A} X_\alpha$. We say $V$ is a standard basic open subset of the product space $X$ if $V$ is of the form $V=\prod_{\alpha \in A} V_\alpha$ such that each $V_\alpha$ is an open subset of the factor space $X_\alpha$ and $V_\alpha=X_\alpha$ for all but finitely many $\alpha \in A$. The finite set $F$ of all $\alpha \in A$ such that $V_\alpha \ne X_\alpha$ is called the support of the open set $V$.

Theorem 1
Let $\sigma$ be the $\sigma$-product of the separable metrizable spaces $\left\{X_\alpha: \alpha \in A \right\}$. For each $n$, let $\sigma_n$ be defined as above. The product space $\sigma_n \times Y$ is Lindelof for each non-negative integer $n$ and for all separable metric space $Y$.

Proof of Theorem 1
We prove by induction on $n$. Note that $\sigma_0=\left\{b \right\}$, the base point. Clearly $\sigma_0 \times Y$ is Lindelof for all separable metric space $Y$. Suppose the theorem hold for the integer $n$. We show that $\sigma_{n+1} \times Y$ for all separable metric space $Y$. To this end, let $\mathcal{U}$ be an open cover of $\sigma_{n+1} \times Y$ where $Y$ is a separable metric space. Without loss of generality, we assume that each element of $\mathcal{U}$ is of the form $V \times W$ where $V=\prod_{\alpha \in A} V_\alpha$ is a standard basic open subset of the product space $X=\prod_{\alpha \in A} X_\alpha$ and $W$ is an open subset of $Y$.

Let $\mathcal{U}_0=\left\{U_1,U_2,U_3,\cdots \right\}$ be a countable subcollection of $\mathcal{U}$ such that $\mathcal{U}_0$ covers $\left\{b \right\} \times Y$. For each $j$, let $U_j=V_j \times W_j$ where $V_j=\prod_{\alpha \in A} V_{j,\alpha}$ is a standard basic open subset of the product space $X$ with $b \in V_j$ and $W_j$ is an open subset of $Y$. For each $j$, let $F_j$ be the support of $V_j$. Note that $\alpha \in F_j$ if and only if $V_{j,\alpha} \ne X_\alpha$. Also for each $\alpha \in F_j$, $b_\alpha \in V_{j,\alpha}$. Furthermore, for each $\alpha \in F_j$, let $V^c_{j,\alpha}=X_\alpha- V_{j,\alpha}$. With all these notations in mind, we define the following open set for each $\beta \in F_j$:

$H_{j,\beta}= \biggl( V^c_{j,\beta} \times \prod_{\alpha \in A, \alpha \ne \beta} X_\alpha \biggr) \times W_j=\biggl( V^c_{j,\beta} \times T_\beta \biggr) \times W_j$

Observe that for each point $y \in \sigma_{n+1}$ such that $y \in V^c_{j,\beta} \times T_\beta$, the point $y$ already deviates from the base point $b$ on one coordinate, namely $\beta$. Thus on the coordinates other than $\beta$, the point $y$ can only deviates from $b$ on at most $n$ many coordinates. Thus $\sigma_{n+1} \cap (V^c_{j,\beta} \times T_\beta)$ is homeomorphic to $V^c_{j,\beta} \times \sigma_n$. Note that $V^c_{j,\beta} \times W_j$ is a separable metric space. By inductive hypothesis, $V^c_{j,\beta} \times \sigma_n \times W_j$ is Lindelof. Thus there are countably many open sets in the open cover $\mathcal{U}$ that covers points of $H_{j,\beta} \cap (\sigma_{n+1} \times W_j)$.

Note that

$\sigma_{n+1} \times Y=\biggl( \bigcup_{j=1}^\infty U_j \cap \sigma_{n+1} \biggr) \cup \biggl( \bigcup \left\{H_{j,\beta} \cap (\sigma_{n+1} \times W_j): j=1,2,3,\cdots, \beta \in F_j \right\} \biggr)$

To see that the left-side is a subset of the right-side, let $t=(x,y) \in \sigma_{n+1} \times Y$. If $t \in U_j$ for some $j$, we are done. Suppose $t \notin U_j$ for all $j$. Observe that $y \in W_j$ for some $j$. Since $t=(x,y) \notin U_j$, $x_\beta \notin V_{j,\beta}$ for some $\beta \in F_j$. Then $t=(x,y) \in H_{j,\beta}$. It is now clear that $t=(x,y) \in H_{j,\beta} \cap (\sigma_{n+1} \times W_j)$. Thus the above set equality is established. Thus one part of $\sigma_{n+1} \times Y$ is covered by countably many open sets in $\mathcal{U}$ while the other part is the union of countably many Lindelof subspaces. It follows that a countable subcollection of $\mathcal{U}$ covers $\sigma_{n+1} \times Y$. $\blacksquare$

Corollary 2
It follows from Theorem 1 that

• If each factor space $X_\alpha$ is a separable metric space, then each $\sigma_n$ is a Lindelof space and that $\sigma=\bigcup_{n=0}^\infty \sigma_n$ is a Lindelof space.
• If each factor space $X_\alpha$ is a compact separable metric space, then each $\sigma_n$ is a compact space and that $\sigma=\bigcup_{n=0}^\infty \sigma_n$ is a $\sigma$-compact space.

Proof of Corollary 2
The first bullet point is a clear corollary of Theorem 1. A previous post shows that $\Sigma$-product of compact spaces is countably compact. Thus $\Sigma_{\alpha \in A} X_\alpha$ is a countably compact space if each $X_\alpha$ is compact. Note that each $\sigma_n$ is a closed subset of $\Sigma_{\alpha \in A} X_\alpha$ and is thus countably compact. Being a Lindelof space, each $\sigma_n$ is compact. It follows that $\sigma=\bigcup_{n=0}^\infty \sigma_n$ is a $\sigma$-compact space. $\blacksquare$

____________________________________________________________________

A non-Lindelof space with a dense Lindelof subspace

Now we put everything together to obtain the example described at the beginning. For each $\alpha \in A$, let $X_\alpha$ be a separable metric space with at least two points. Then the $\Sigma$-product $\Sigma_{\alpha \in A} X_\alpha$ is collectionwise normal (see this previous post). According to the lemma in this previous post, the $\Sigma$-product $\Sigma_{\alpha \in A} X_\alpha$ contains a closed copy of $\omega_1$. Thus the $\Sigma$-product $\Sigma_{\alpha \in A} X_\alpha$ is not Lindelof. It is clear that the $\sigma$-product is a dense subspace of $\Sigma_{\alpha \in A} X_\alpha$. By Corollary 2, the $\sigma$-product is a Lindelof subspace of $\Sigma_{\alpha \in A} X_\alpha$.

Using specific factor spaces, if each $X_\alpha=\mathbb{R}$ with the usual topology, then $\Sigma_{\alpha<\omega_1} X_\alpha$ is a non-Lindelof space with a dense Lindelof subspace. On the other hand, if each $X_\alpha=[0,1]$ with the usual topology, then $\Sigma_{\alpha<\omega_1} X_\alpha$ is a non-Lindelof space with a dense $\sigma$-compact subspace. Another example of a non-Lindelof space with a dense Lindelof subspace is given In this previous post (see Example 1).

____________________________________________________________________

$\copyright \ 2014 \text{ by Dan Ma}$