The Sorgenfrey plane is subnormal

The Sorgenfrey line is the real line with the topology generated by the base of half-open intervals of the form [a,b). The Sorgenfrey line is one of the most important counterexamples in general topology. One of the often recited facts about this counterexample is that the Sorgenfrey plane (the square of the Sorgengfrey line) is not normal. We show that, though far from normal, the Sorgenfrey plane is subnormal.

A subset M of a space Y is a G_\delta subset of Y (or a G_\delta-set in Y) if M is the intersection of countably many open subsets of Y. A subset M of a space Y is a F_\sigma subset of Y (or a F_\sigma-set in Y) if Y-M is a G_\delta-set in Y (equivalently if M is the union of countably many closed subsets of Y).

A space Y is normal if for any disjoint closed subsets H and K of Y, there exist disjoint open subsets U_H and U_K of Y such that H \subset U_H and K \subset U_K. A space Y is subnormal if for any disjoint closed subsets H and K of Y, there exist disjoint G_\delta subsets V_H and V_K of Y such that H \subset V_H and K \subset V_K. Clearly any normal space is subnormal. The Sorgenfrey plane is an example of a subnormal space that is not normal.

In the proof of the non-normality of the Sorgenfrey plane in this previous post, one of the two disjoint closed subsets of the Sorgenfrey plane that cannot be separated by disjoint open sets is countable. Thus the Sorgenfrey plane is not only not normal; it is not pseudonormal (also discussed in this previous post). A space Y is pseudonormal if for any disjoint closed subsets H and K of Y (one of which is countable), there exist disjoint open subsets U_H and U_K of Y such that H \subset U_H and K \subset U_K. The examples of the Sorgenfrey plane and \omega_1 \times (\omega_1+1) show that these two weak forms of normality (pseudonormal and subnormal) are not equivalent. The space \omega_1 \times (\omega_1+1) is pseudonormal but not subnormal (see this previous post for the non-subnormality).

A space Y is said to be a perfect space if every closed subset of Y is a G_\delta subset of Y (equivalently, every open subset of Y is an F_\sigma-subset of Y). It is clear that any perfect space is subnormal. We show that the Sorgenfrey plane is perfect. There are subnormal spaces that are not perfect (see the example below).

____________________________________________________________________

The Sorgenfrey plane is perfect

Let S denote the Sorgenfrey line, i.e., the real line \mathbb{R} topologized using the base of half-open intervals of the form [a,b)=\left\{x \in \mathbb{R}: a \le x <b \right\}. The Sorgenfrey plane is the product space S \times S. We show the following:

Proposition 1
The Sorgenfrey line S is perfect.

Proof of Proposition 1
Let U be a non-empty subset of S. We show that U is a F_\sigma-set. Let U_0 be the interior of U in the usual topology. In other words, U_0 is the following set:

    U_0=\left\{x \in U: \exists \ (a,b) \text{ such that } x \in (a,b) \text{ and } (a,b) \subset U \right\}

The real line with the usual topology is perfect. Thus U_0=\bigcup_{n=1}^\infty F_n where each F_n is a closed subset of the real line \mathbb{R}. Since the Sorgenfrey topology is finer than the usual topology, each F_n is also closed in the Sorgenfrey line.

Consider Y=U-U_0. We claim that Y is countable. Suppose Y is uncountable. Since the Sorgenfrey line is hereditarily Lindelof, there exists y \in Y such that y is a limit point of Y (see Corollary 2 in this previous post). Since y \in Y \subset U, [y,t) \subset U for some t. Note that (y,t) \subset U_0, which means that no point of the open interval (y,t) can belong to Y. On the other hand, since y is a limit point of Y, y<w<t for some w \in Y, a contradiction. Thus Y must be countable. It follows that U is the union of countably many closed subsets of S. \blacksquare

Proposition 2
If X is perfect and Y is metrizable, then X \times Y is perfect.

Proof of Proposition 2
Let X be perfect. Let Y be a space with a base \mathcal{B}=\bigcup_{n=1}^\infty \mathcal{B}_n such that each \mathcal{B}_n, in addition to being a collection of basic open sets, is a discrete collection. The existence of such a base is equivalent to metrizability, a well known result called Bing’s metrization theorem (see Theorem 4.4.8 in [1]). Let U be a non-empty open subset of X \times Y. We show that it is an F_\sigma-set in X \times Y. For each x \in U, there is some open subset V of X and there is some W \in \mathcal{B} such that x \in V \times W and V \times \overline{W} \subset U. Thus U is the union of a collection of sets of the form V \times \overline{W}. Thus we have:

    U=\bigcup \mathcal{O} \text{ where } \mathcal{O}=\left\{ V_\alpha \times \overline{W_\alpha}:  \alpha \in A \right\}

for some index set A. For each positive integer m, let \mathcal{O}_m be defined by

    \mathcal{O}_m=\left\{V_\alpha \times \overline{W_\alpha} \in \mathcal{O}: W_\alpha \in \mathcal{B}_m \right\}

For each \alpha \in A, let V_\alpha=\bigcup_{n=1}^\infty V_{\alpha,n} where each V_{\alpha,n} is a closed subset of X. For each pair of positive integers n and m, define \mathcal{O}_{n,m} by

    \mathcal{O}_{n,m}=\left\{V_{\alpha,n} \times \overline{W_\alpha}: V_\alpha \times \overline{W_\alpha} \in \mathcal{O}_m  \right\}

We claim that each \mathcal{O}_{n,m} is a discrete collection of sets in the space X \times Y. Let (a,b) \in X \times Y. Since \mathcal{B}_m is discrete, there exists some open subset H_b of Y with b \in H_b such that H_b can intersect at most one \overline{W} where W \in \mathcal{B}_m. Then X \times H_b is an open subset of X \times Y with (a,b) \in X \times H_b such that X \times H_b can intersect at most one set of the form V_{\alpha,n} \times \overline{W_\alpha}. Then C_{n,m}=\bigcup \mathcal{O}_{n,m} is a closed subset of X \times Y. It is clear that U is the union of C_{n,m} over all countably many possible pairs n,m. Thus U is an F_\sigma-set in X \times Y. \blacksquare

Proposition 3
The Sorgenfrey plane S \times S is perfect.

Proof of Proposition 3
To get ready for the proof, consider the product spaces X_1=\mathbb{R} \times S and X_2=S \times \mathbb{R} where \mathbb{R} has the usual topology. By both Proposition 1 and Proposition 2, both X_1 and X_2 are perfect. Also note that the Sorgenfrey plane topology is finer than the topologies for both X_1 and X_2. Thus a closed set in X_1 (in X_2) is also a closed set in S \times S. It follows that any F_\sigma-set in X_1 (in X_2) is also an F_\sigma-set in S \times S.

Let U be a non-empty subset of S \times S. We show that U is a F_\sigma-set. We assume that U is the union of basic open sets of the form [a,b) \times [a,b). Consider the sets U_1 and U_2 defined by:

    U_1=\left\{x \in U: \exists \ (a,b) \times [a,b) \text{ such that } x \in (a,b) \times [a,b) \text{ and } (a,b) \times [a,b) \subset U \right\}

    U_2=\left\{x \in U: \exists \ [a,b) \times (a,b) \text{ such that } x \in [a,b) \times (a,b) \text{ and } [a,b) \times (a,b) \subset U \right\}

Note that U_1 is the interior of U when U is considered as a subspace of X_1. Likewise, U_2 is the interior of U when U is considered as a subspace of X_2. Since both X_1 and X_2 are perfect, U_1 and U_2 are F_\sigma in X_1 and X_2, respectively. Hence both U_1 and U_2 are F_\sigma-sets in S \times S.

Let Y=U-(U_1 \cup U_2). We claim that Y is an F_\sigma-set in S \times S. Proposition 3 is established when this claim is proved. To get ready to prove this claim, for each x=(x_1,x_2) \in S \times S, and for each positive integer k, let B_k(x) be the half-open square B_k(x)=[x_1,x_1+\frac{1}{k}) \times [x_2,x_2+\frac{1}{k}). Then \mathcal{B}(x)=\left\{B_k(x): k=1,2,3,\cdots \right\} is a local base at the point x. For each positive integer k, define Y_k by

    Y_k=\left\{y=(y_1,y_2) \in Y: B_k(y) \subset U \right\}

Clearly Y=\bigcup_{k=1}^\infty Y_k. We claim that each Y_k is closed in S \times S. Suppose x=(x_1,x_2) \in S \times S-Y_k. In relation to the point x, Y_k can be broken into several subsets as follows:

    Y_{k,1}=\left\{y=(y_1,y_2) \in Y_k: y_1=x_1 \text{ and } y_2 \ne x_2 \right\}

    Y_{k,2}=\left\{y=(y_1,y_2) \in Y_k: y_1 \ne x_1 \text{ and } y_2 = x_2 \right\}

    Y_{k,\varnothing}=\left\{y=(y_1,y_2) \in Y_k: y_1 \ne x_1 \text{ and } y_2 \ne x_2 \right\}

Since x \notin Y_k, it follows that Y_k=Y_{k,1} \cup Y_{k,2} \cup Y_{k,\varnothing}. We show that for each of these three sets, there is an open set containing the point x that is disjoint from the set.

Consider Y_{k,1}. If B_k(x)=[x_1,x_1+\frac{1}{k}) \times [x_2,x_2+\frac{1}{k}) is disjoint from Y_{k,1}, then we are done. So assume B_k(x) \cap Y_{k,1} \ne \varnothing. Let t=(t_1,t_2) \in B_k(x) \cap Y_{k,1}. Note that t_1=x_1 and t_2 > x_2. Now consider the following open set:

    G=B_k(x) \cap \left\{y=(y_1,y_2) \in S \times S: y_2<t_2 \right\}

The set G is an open set containing the point x. We claim that G \cap Y_{k,1}=\varnothing. Suppose g \in G \cap Y_{k,1}. Then g_1=x_1 and x_2<g_2<t_2. Consider the following set:

    H=B_k(g) \cap \left\{h=(h_1,h_2) \in S \times S: g_2<h_2 \right\}

Note that H is an open subset of X_2=S \times \mathbb{R}. Since g \in Y_k, it follows that H \subset B_k(g) \subset U. Thus H is a subset of the interior of U (as a subspace of X_2). We have H \subset U_2. It follows that t \in H since

    x_1=g_1=t_1

    x_2<g_2<t_2<x_2+\frac{1}{k}<g_2+\frac{1}{k}

On the other hand, t \in Y_{k,1} \subset Y_k \subset Y. Hence t \notin U_2, a contradiction. Thus the claim that G \cap Y_{k,1}=\varnothing must be true.

The case Y_{k,2} is symmetrical to the case Y_{k,1}. Thus by applying a similar argument, there is an open set containing the point x that is disjoint from the set Y_{k,2}.

Now consider the case Y_{k,\varnothing}. If B_k(x)=[x_1,x_1+\frac{1}{k}) \times [x_2,x_2+\frac{1}{k}) is disjoint from Y_{k,\varnothing}, then we are done. So assume B_k(x) \cap Y_{k,\varnothing} \ne \varnothing. Let t=(t_1,t_2) \in B_k(x) \cap Y_{k,\varnothing}. Note that t_1>x_1 and t_2 > x_2. Now consider the following open set:

    G=B_k(x) \cap \left\{y=(y_1,y_2) \in S \times S: y_1<t_1 \text{ and }y_2<t_2 \right\}

The set G is an open set containing the point x. We claim that G \cap Y_{k,\varnothing}=\varnothing. Suppose g \in G \cap Y_{k,\varnothing}. Then x_1<g_1<t_1 and x_2<g_2<t_2. Consider the following set:

    H=B_k(g) \cap \left\{h=(h_1,h_2) \in S \times S: g_2<h_2 \right\}

As in the previous case, H is an open subset of X_2=S \times \mathbb{R}. Since g \in Y_k, it follows that H \subset B_k(g) \subset U. As before, H \subset U_2. We also have a contradiction in that t \in H (based on the following)

    x_1<g_1<t_1<x_1+\frac{1}{k}<g_1+\frac{1}{k}

    x_2<g_2<t_2<x_2+\frac{1}{k}<g_2+\frac{1}{k}

and on the one hand and t \in Y_{k,\varnothing} \subset Y=U-(U_1 \cup U_2). Thus the claim that G \cap Y_{k,\varnothing}=\varnothing is true. Take the intersection of the three open sets from the three cases, we have an open set containing x that is disjoint from Y_k. Thus Y_k is closed in S \times S and Y=\bigcup_{k=1}^\infty Y_k is F_\sigma in S \times S . \blacksquare

Remarks
The authors of [2] showed that any finite power of the Sorgenfrey line is perfect. The proof in [2] is an inductive proof: if S^n is perfect, then S^{n+1} is perfect. We take the inductive proof in [2] and adapt it for the Sorgenfrey plane. The authors in [2] also proved that for a sequence of spaces X_1,X_2,X_3,\cdots such that the product of any finite number of these spaces is perfect, the product \prod_{n=1}^\infty X_n is perfect. Then S^\omega is perfect.

____________________________________________________________________

A non-perfect example

Any perfect space is subnormal. Subnormal spaces do not have to be perfect. In fact subnormal non-normal spaces do not have to be perfect. From a perfect space that is not normal (e.g. the Sorgenfrey plane), one can generate a subnormal and non-normal space that is not perfect. Let X be a subnormal and non-normal space. Let Y be a normal space that is not perfectly normal. There are many possible choices for Y. If a specific example is needed, one can take Y=\omega_1 with the order topology. Let X \bigoplus Y be the disjoint sum (union) of X and Y. The presence of Y destroys the perfectness. It is clear that any two disjoint closed sets can be separated by disjoint G_\delta-sets.

____________________________________________________________________

Reference

  1. Engelking, R., General Topology, Revised and Completed edition, Heldermann Verlag, Berlin, 1989.
  2. Heath, R. W., Michael, E., A property of the Sorgenfrey line, Compositio Math., 23, 185-188, 1971.

____________________________________________________________________
\copyright \ 2014 \text{ by Dan Ma}

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s