Cp(X) is countably tight when X is compact

Let X be a completely regular space (also called Tychonoff space). If X is a compact space, what can we say about the function space C_p(X), the space of all continuous real-valued functions with the pointwise convergence topology? When X is an uncountable space, C_p(X) is not first countable at every point. This follows from the fact that C_p(X) is a dense subspace of the product space \mathbb{R}^X and that no dense subspace of \mathbb{R}^X can be first countable when X is uncountable. However, when X is compact, C_p(X) does have a convergence property, namely C_p(X) is countably tight.



Let X be a completely regular space. The tightness of X, denoted by t(X), is the least infinite cardinal \kappa such that for any A \subset X and for any x \in X with x \in \overline{A}, there exists B \subset A for which \lvert B \lvert \le \kappa and x \in \overline{B}. When t(X)=\omega, we say that Y has countable tightness or is countably tight. When t(X)>\omega, we say that X has uncountable tightness or is uncountably tight. Clearly any first countable space is countably tight. There are other convergence properties in between first countability and countable tightness, e.g., the Frechet-Urysohn property. The notion of countable tightness and tightness in general is discussed in further details here.

The fact that C_p(X) is countably tight for any compact X follows from the following theorem.

Theorem 1
Let X be a completely regular space. Then the function space C_p(X) is countably tight if and only if X^n is Lindelof for each n=1,2,3,\cdots.

Theorem 1 is the countable case of Theorem I.4.1 on page 33 of [1]. We prove one direction of Theorem 1, the direction that will give us the desired result for C_p(X) where X is compact.

Proof of Theorem 1
The direction \Longleftarrow
Suppose that X^n is Lindelof for each positive integer. Let f \in C_p(X) and f \in \overline{H} where H \subset C_p(X). For each positive integer n, we define an open cover \mathcal{U}_n of X^n.

Let n be a positive integer. Let t=(x_1,\cdots,x_n) \in X^n. Since f \in \overline{H}, there is an h_t \in H such that \lvert h_t(x_j)-f(x_j) \lvert <\frac{1}{n} for all j=1,\cdots,n. Because both h_t and f are continuous, for each j=1,\cdots,n, there is an open set W(x_j) \subset X with x_j \in W(x_j) such that \lvert h_t(y)-f(y) \lvert < \frac{1}{n} for all y \in W(x_j). Let the open set U_t be defined by U_t=W(x_1) \times W(x_2) \times \cdots \times W(x_n). Let \mathcal{U}_n=\left\{U_t: t=(x_1,\cdots,x_n) \in X^n \right\}.

For each n, choose \mathcal{V}_n \subset \mathcal{U}_n be countable such that \mathcal{V}_n is a cover of X^n. Let K_n=\left\{h_t: t \in X^n \text{ such that } U_t \in \mathcal{V}_n \right\}. Let K=\bigcup_{n=1}^\infty K_n. Note that K is countable and K \subset H.

We now show that f \in \overline{K}. Choose an arbitrary positive integer n. Choose arbitrary points y_1,y_2,\cdots,y_n \in X. Consider the open set U defined by

    U=\left\{g \in C_p(X): \forall \ j=1,\cdots,n, \lvert g(y_j)-f(y_j) \lvert <\frac{1}{n} \right\}.

We wish to show that U \cap K \ne \varnothing. Choose U_t \in \mathcal{V}_n such that (y_1,\cdots,y_n) \in U_t where t=(x_1,\cdots,x_n) \in X^n. Consider the function h_t that goes with t. It is clear from the way h_t is chosen that \lvert h_t(y_j)-f(x_j) \lvert<\frac{1}{n} for all j=1,\cdots,n. Thus h_t \in K_n \cap U, leading to the conclusion that f \in \overline{K}. The proof that C_p(X) is countably tight is completed.

The direction \Longrightarrow
See Theorem I.4.1 of [1].



As shown above, countably tightness is one convergence property of C_p(X) that is guaranteed when X is compact. In general, it is difficult for C_p(X) to have stronger convergence properties such as the Frechet-Urysohn property. It is well known C_p(\omega_1+1) is Frechet-Urysohn. According to Theorem II.1.2 in [1], for any compact space X, C_p(X) is a Frechet-Urysohn space if and only if the compact space X is a scattered space.



  1. Arkhangelskii, A. V., Topological Function Spaces, Mathematics and Its Applications Series, Kluwer Academic Publishers, Dordrecht, 1992.

\copyright \ 2014 - 2015 \text{ by Dan Ma}


Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )


Connecting to %s