Cp(omega 1 + 1) is monolithic and Frechet-Urysohn

This is another post that discusses what C_p(X) is like when X is a compact space. In this post, we discuss the example C_p(\omega_1+1) where \omega_1+1 is the first compact uncountable ordinal. Note that \omega_1+1 is the successor to \omega_1, which is the first (or least) uncountable ordinal. The function space C_p(\omega_1+1) is monolithic and is a Frechet-Urysohn space. Interestingly, the first property is possessed by C_p(X) for all compact spaces X. The second property is possessed by all compact scattered spaces. After we discuss C_p(\omega_1+1), we discuss briefly the general results for C_p(X).

____________________________________________________________________

Initial discussion

The function space C_p(\omega_1+1) is a dense subspace of the product space \mathbb{R}^{\omega_1}. In fact, C_p(\omega_1+1) is homeomorphic to a subspace of the following subspace of \mathbb{R}^{\omega_1}:

    \Sigma(\omega_1)=\left\{x \in \mathbb{R}^{\omega_1}: x_\alpha \ne 0 \text{ for at most countably many } \alpha < \omega_1 \right\}

The subspace \Sigma(\omega_1) is the \Sigma-product of \omega_1 many copies of the real line \mathbb{R}. The \Sigma-product of separable metric spaces is monolithic (see here). The \Sigma-product of first countable spaces is Frechet-Urysohn (see here). Thus \Sigma(\omega_1) has both of these properties. Since the properties of monolithicity and being Frechet-Urysohn are carried over to subspaces, the function space C_p(\omega_1+1) has both of these properties. The key to the discussion is then to show that C_p(\omega_1+1) is homeopmophic to a subspace of the \Sigma-product \Sigma(\omega_1).

____________________________________________________________________

Connection to \Sigma-product

We show that the function space C_p(\omega_1+1) is homeomorphic to a subspace of the \Sigma-product of \omega_1 many copies of the real lines. Let Y_0 be the following subspace of C_p(\omega_1+1):

    Y_0=\left\{f \in C_p(\omega_1+1): f(\omega_1)=0 \right\}

Every function in Y_0 has non-zero values at only countably points of \omega_1+1. Thus Y_0 can be regarded as a subspace of the \Sigma-product \Sigma(\omega_1).

By Theorem 1 in this previous post, C_p(\omega_1+1) \cong Y_0 \times \mathbb{R}, i.e, the function space C_p(\omega_1+1) is homeomorphic to the product space Y_0 \times \mathbb{R}. On the other hand, the product Y_0 \times \mathbb{R} can also be regarded as a subspace of the \Sigma-product \Sigma(\omega_1). Basically adding one additional factor of the real line to Y_0 still results in a subspace of the \Sigma-product. Thus we have:

    C_p(\omega_1+1) \cong Y_0 \times \mathbb{R} \subset \Sigma(\omega_1) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (1)

Thus C_p(\omega_1+1) possesses all the hereditary properties of \Sigma(\omega_1). Another observation we can make is that \Sigma(\omega_1) is not hereditarily normal. The function space C_p(\omega_1+1) is not normal (see here). The \Sigma-product \Sigma(\omega_1) is normal (see here). Thus \Sigma(\omega_1) is not hereditarily normal.

____________________________________________________________________

A closer look at C_p(\omega_1+1)

In fact C_p(\omega_1+1) has a stronger property that being monolithic. It is strongly monolithic. We use homeomorphic relation in (1) above to get some insight. Let h be a homeomorphism from C_p(\omega_1+1) onto Y_0 \times \mathbb{R}. For each \alpha<\omega_1, let H_\alpha be defined as follows:

    H_\alpha=\left\{f \in C_p(\omega_1+1): f(\gamma)=0 \ \forall \ \alpha<\gamma<\omega_1 \right\}

Clearly H_\alpha \subset Y_0. Furthermore H_\alpha can be considered as a subspace of \mathbb{R}^\omega and is thus metrizable. Let A be a countable subset of C_p(\omega_1+1). Then h(A) \subset H_\alpha \times \mathbb{R} for some \alpha<\omega_1. The set H_\alpha \times \mathbb{R} is metrizable. The set H_\alpha \times \mathbb{R} is also a closed subset of Y_0 \times \mathbb{R}. Then \overline{A} is contained in H_\alpha \times \mathbb{R} and is therefore metrizable. We have shown that the closure of every countable subspace of C_p(\omega_1+1) is metrizable. In other words, every separable subspace of C_p(\omega_1+1) is metrizable. This property follows from the fact that C_p(\omega_1+1) is strongly monolithic.

____________________________________________________________________

Monolithicity and Frechet-Urysohn property

As indicated at the beginning, the \Sigma-product \Sigma(\omega_1) is monolithic (in fact strongly monolithic; see here) and is a Frechet-Urysohn space (see here). Thus the function space C_p(\omega_1+1) is both strongly monolithic and Frechet-Urysohn.

Let \tau be an infinite cardinal. A space X is \tau-monolithic if for any A \subset X with \lvert A \lvert \le \tau, we have nw(\overline{A}) \le \tau. A space X is monolithic if it is \tau-monolithic for all infinite cardinal \tau. It is straightforward to show that X is monolithic if and only of for every subspace Y of X, the density of Y equals to the network weight of Y, i.e., d(Y)=nw(Y). A longer discussion of the definition of monolithicity is found here.

A space X is strongly \tau-monolithic if for any A \subset X with \lvert A \lvert \le \tau, we have w(\overline{A}) \le \tau. A space X is strongly monolithic if it is strongly \tau-monolithic for all infinite cardinal \tau. It is straightforward to show that X is strongly monolithic if and only if for every subspace Y of X, the density of Y equals to the weight of Y, i.e., d(Y)=w(Y).

In any monolithic space, the density and the network weight coincide for any subspace, and in particular, any subspace that is separable has a countable network. As a result, any separable monolithic space has a countable network. Thus any separable space with no countable network is not monolithic, e.g., the Sorgenfrey line. On the other hand, any space that has a countable network is monolithic.

In any strongly monolithic space, the density and the weight coincide for any subspace, and in particular any separable subspace is metrizable. Thus being separable is an indicator of metrizability among the subspaces of a strongly monolithic space. As a result, any separable strongly monolithic space is metrizable. Any separable space that is not metrizable is not strongly monolithic. Thus any non-metrizable space that has a countable network is an example of a monolithic space that is not strongly monolithic, e.g., the function space C_p([0,1]). It is clear that all metrizable spaces are strongly monolithic.

The function space C_p(\omega_1+1) is not separable. Since it is strongly monolithic, every separable subspace of C_p(\omega_1+1) is metrizable. We can see this by knowing that C_p(\omega_1+1) is a subspace of the \Sigma-product \Sigma(\omega_1), or by using the homeomorphism h as in the previous section.

For any compact space X, C_p(X) is countably tight (see this previous post). In the case of the compact uncountable ordinal \omega_1+1, C_p(\omega_1+1) has the stronger property of being Frechet-Urysohn. A space Y is said to be a Frechet-Urysohn space (also called a Frechet space) if for each y \in Y and for each M \subset Y, if y \in \overline{M}, then there exists a sequence \left\{y_n \in M: n=1,2,3,\cdots \right\} such that the sequence converges to y. As we shall see below, C_p(X) is rarely Frechet-Urysohn.

____________________________________________________________________

General discussion

For any compact space X, C_p(X) is monolithic but does not have to be strongly monolithic. The monolithicity of C_p(X) follows from the following theorem, which is Theorem II.6.8 in [1].

Theorem 1
Then the function space C_p(X) is monolithic if and only if X is a stable space.

See chapter 3 section 6 of [1] for a discussion of stable spaces. We give the definition here. A space X is stable if for any continuous image Y of X, the weak weight of Y, denoted by ww(Y), coincides with the network weight of Y, denoted by nw(Y). In [1], ww(Y) is notated by iw(Y). The cardinal function ww(Y) is the minimum cardinality of all w(T), the weight of T, for which there exists a continuous bijection from Y onto T.

All compact spaces are stable. Let X be compact. For any continuous image Y of X, Y is also compact and ww(Y)=w(Y), since any continuous bijection from Y onto any space T is a homeomorphism. Note that ww(Y) \le nw(Y) \le w(Y) always holds. Thus ww(Y)=w(Y) implies that ww(Y)=nw(Y). Thus we have:

Corollary 2
Let X be a compact space. Then the function space C_p(X) is monolithic.

However, the strong monolithicity of C_p(\omega_1+1) does not hold in general for C_p(X) for compact X. As indicated above, C_p([0,1]) is monolithic but not strongly monolithic. The following theorem is Theorem II.7.9 in [1] and characterizes the strong monolithicity of C_p(X).

Theorem 3
Let X be a space. Then C_p(X) is strongly monolithic if and only if X is simple.

A space X is \tau-simple if whenever Y is a continuous image of X, if the weight of Y \le \tau, then the cardinality of Y \le \tau. A space X is simple if it is \tau-simple for all infinite cardinal numbers \tau. Interestingly, any separable metric space that is uncountable is not \omega-simple. Thus [0,1] is not \omega-simple and C_p([0,1]) is not strongly monolithic, according to Theorem 3.

For compact spaces X, C_p(X) is rarely a Frechet-Urysohn space as evidenced by the following theorem, which is Theorem III.1.2 in [1].

Theorem 4
Let X be a compact space. Then the following conditions are equivalent.

  1. C_p(X) is a Frechet-Urysohn space.
  2. C_p(X) is a k-space.
  3. The compact space X is a scattered space.

A space X is a scattered space if for every non-empty subspace Y of X, there exists an isolated point of Y (relative to the topology of Y). Any space of ordinals is scattered since every non-empty subset has a least element. Thus \omega_1+1 is a scattered space. On the other hand, the unit interval [0,1] with the Euclidean topology is not scattered. According to this theorem, C_p([0,1]) cannot be a Frechet-Urysohn space.

____________________________________________________________________

Reference

  1. Arkhangelskii, A. V., Topological Function Spaces, Mathematics and Its Applications Series, Kluwer Academic Publishers, Dordrecht, 1992.

____________________________________________________________________
\copyright \ 2014 \text{ by Dan Ma}

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s