# Lindelof Exercise 1

A space $X$ is called a $\sigma$-compact space if it is the union of countably many compact subspaces. Clearly, any $\sigma$-compact space is Lindelof. It is well known that the product of Lindelof spaces does not need to be Lindelof. The most well known example is perhaps the square of the Sorgenfrey line. In certain cases, the Lindelof property can be productive. For example, the product of countably many $\sigma$-compact spaces is a Lindelof space. The discussion here centers on the following theorem.

Theorem 1
Let $X_1,X_2,X_3,\cdots$ be $\sigma$-compact spaces. Then the product space $\prod_{i=1}^\infty X_i$ is Lindelof.

Theorem 1 is Exercise 3.8G in page 195 of General Topology by Engelking [1]. The reference for Exercise 3.8G is [2]. But the theorem is not found in [2] (it is not stated directly and it does not seem to be an obvious corollary of a theorem discussed in that paper). However, a hint is provided in Engelking for Exercise 3.8G. In this post, we discuss Theorem 1 as an exercise by giving expanded hint. Solutions to some of the key steps in the expanded hint are given at the end of the post.

Expanded Hint

It is helpful to first prove the following theorem.

Theorem 2
For each integer $i \ge 1$, let $C_{i,1},C_{i,2},\cdots$ be compact spaces and let $C_i$ be the topological sum:

$C_i=C_{i,1} \oplus C_{i,2} \oplus C_{i,3} \oplus \cdots=\oplus_{j=1}^\infty C_{i,j}$

Then the product $\prod_{i=1}^\infty C_i$ is Lindelof.

Note that in the topological sum $C_{i,1} \oplus C_{i,2} \oplus C_{i,3} \oplus \cdots$, the spaces $C_{i,1},C_{i,2},C_{i,3},\cdots$ are considered pairwise disjoint. The open sets in the sum are simply unions of the open sets in the individual spaces. Another way to view this topology: each of the $C_{i,j}$ is both closed and open in the topological sum. Theorem 2 is essentially saying that the product of countably many $\sigma$-compact spaces is Lindelof if each $\sigma$-compact space is the union of countably many disjoint compact spaces. The hint for Exercise 3.8G can be applied much more naturally on Theorem 2 than on Theorem 1. The following is Exercise 3.8F (a), which is the hint for Exercise 3.8G.

Lemma 3
Let $Z$ be a compact space. Let $X$ be a subspace of $Z$. Suppose that there exist $F_1,F_2,F_3,\cdots$, closed subsets of $Z$, such that for all $x$ and $y$ where $x \in X$ and $y \in Z-X$, there exists $F_i$ such that $x \in F_i$ and $y \notin F_i$. Then $X$ is a Lindelof space.

The following theorem connects the hint (Lemma 3) with Theorem 2.

Theorem 4
For each integer $i \ge 1$, let $Z_i$ be the one-point compactification of $C_i$ in Theorem 2. Then the product $Z=\prod_{i=1}^\infty Z_i$ is a compact space. Furthermore, $X=\prod_{i=1}^\infty C_i$ is a subspace of $Z$. Prove that $Z$ and $X$ satisfy Lemma 3.

Each $C_i$ in Theorem 2 is a locally compact space. To define the one-point compactifications, for each $i$, choose $p_i \notin C_i$. Make sure that $p_i \ne p_j$ for $i \ne j$. Then $Z_i$ is simply

$Z_i=C_i \cup \{ p_i \}=C_{i,1} \oplus C_{i,2} \oplus C_{i,3} \oplus \cdots \cup \{ p_i \}$

with the topology defined as follows:

• Open subsets of $C_i$ continue to be open in $Z_i$.
• An open set containing $p_i$ is of the form $\{ p_i \} \cup (C_i - \overline{D})$ where $D$ is open in $C_i$ and $D$ is contained in the union of finitely many $C_{i,j}$.

For convenience, each point $p_i$ is called a point at infinity.

Note that Theorem 2 follows from Lemma 3 and Theorem 4. In order to establish Theorem 1 from Theorem 2, observe that the Lindelof property is preserved by any continuous mapping and that there is a natural continuous map from the product space in Theorem 2 to the product space in Theorem 1.

$\text{ }$

$\text{ }$

$\text{ }$

$\text{ }$

$\text{ }$

$\text{ }$

Proofs of Key Steps

Proof of Lemma 3
Let $Z$, $X$ and $F_1,F_2,F_3,\cdots$ be as described in the statement for Lemma 3. Let $\mathcal{U}$ be a collection of open subsets of $Z$ such that $\mathcal{U}$ covers $X$. We would like to show that a countable subcollection of $\mathcal{U}$ is also a cover of $X$. Let $O=\cup \mathcal{U}$. If $Z-O=\varnothing$, then $\mathcal{U}$ is an open cover of $Z$ and there is a finite subset of $\mathcal{U}$ that is a cover of $Z$ and thus a cover of $X$. Thus we can assume that $Z-O \ne \varnothing$.

Let $F=\{ F_1,F_2,F_3,\cdots \}$. Let $K=Z-O$, which is compact. We make the following claim.

Claim. Let $Y$ be the union of all possible $\cap G$ where $G \subset F$ is finite and $\cap G \subset O$. Then $X \subset Y \subset O$.

To establish the claim, let $x \in X$. For each $y \in K=Z-O$, there exists $F_{n(y)}$ such that $x \in F_{n(y)}$ and $y \notin F_{n(y)}$. This means that $\{ Z-F_{n(y)}: y \in K \}$ is an open cover of $K$. By the compactness of $K$, there are finitely many $F_{n(y_1)}, \cdots, F_{n(y_k)}$ such that $F_{n(y_1)} \cap \cdots \cap F_{n(y_k)}$ misses $K$, or equivalently $F_{n(y_1)} \cap \cdots \cap F_{n(y_k)} \subset O$. Note that $x \in F_{n(y_1)} \cap \cdots \cap F_{n(y_k)}$. Further note that $F_{n(y_1)} \cap \cdots \cap F_{n(y_k)} \subset Y$. This establishes the claim that $X \subset Y$. The claim that $Y \subset O$ is clear from the definition of $Y$.

Each set $F_i$ is compact since it is closed in $Z$. The intersection of finitely many $F_i$ is also compact. Thus the $\cap G$ in the definition of $Y$ in the above claim is compact. There can be only countably many $\cap G$ in the definition of $Y$. Thus $Y$ is a $\sigma$-compact space that is covered by the open cover $\mathcal{U}$. Choose a countable $\mathcal{V} \subset \mathcal{U}$ such that $\mathcal{V}$ covers $Y$. Then $\mathcal{V}$ is a cover of $X$ too. This completes the proof that $X$ is Lindelof.

$\text{ }$

Proof of Theorem 4
Recall that $Z=\prod_{i=1}^\infty Z_i$ and that $X=\prod_{i=1}^\infty C_i$. Each $Z_i$ is the one-point compactification of $C_i$, which is the topological sum of the disjoint compact spaces $C_{i,1},C_{i,2},\cdots$.

For integers $i,j \ge 1$, define $K_{i,j}=C_{i,1} \oplus C_{i,2} \oplus \cdots \oplus C_{i,j}$. For integers $n,j \ge 1$, define the product $F_{n,j}$ as follows:

$F_{n,j}=K_{1,j} \times \cdots \times K_{n,j} \times Z_{n+1} \times Z_{n+2} \times \cdots$

Since $F_{n,j}$ is a product of compact spaces, $F_{n,j}$ is compact and thus closed in $Z$. There are only countably many $F_{n,j}$.

We claim that the countably many $F_{n,j}$ have the property indicated in Lemma 3. To this end, let $f \in X=\prod_{i=1}^\infty C_i$ and $g \in Z-X$. There exists an integer $n \ge 1$ such that $g(n) \notin C_{n}$. This means that $g(n) \notin C_{n,j}$ for all $j$, i.e. $g(n)=p_n$ (so $g(n)$ must be the point at infinity). Choose $j \ge 1$ large enough such that

$f(i) \in K_{i,j}=C_{i,1} \oplus C_{i,2} \oplus \cdots \oplus C_{i,j}$

for all $i \le n$. It follows that $f \in F_{n,j}$ and $g \notin F_{n,j}$. Thus the sequence of closed sets $F_{n,j}$ satisfies Lemma 3. By Lemma 3, $X=\prod_{i=1}^\infty C_i$ is Lindelof.

Reference

1. Engelking R., General Topology, Revised and Completed edition, Elsevier Science Publishers B. V., Heldermann Verlag, Berlin, 1989.
2. Hager A. W., Approximation of real continuous functions on Lindelof spaces, Proc. Amer. Math. Soc., 22, 156-163, 1969.

$\text{ }$

$\text{ }$

$\text{ }$

Dan Ma topology

Daniel Ma topology

Dan Ma math

Daniel Ma mathematics

$\copyright$ 2019 – Dan Ma