# In between G-delta diagonal and submetrizable

This post discusses the property of having a $G_\delta$-diagonal and related diagonal properties. The focus is on the diagonal properties in between $G_\delta$-diagonal and submetrizability. The discussion is followed by a diagram displaying the relative strengths of these properties. Some examples and questions are discussed.

G-delta Diagonal

In any space $Y$, a subset $A$ is said to be a $G_\delta$-set in the space $Y$ (or $A$ is a $G_\delta$-subset of $Y$) if $A$ is the intersection of countably many open subsets of $Y$. A subset $A$ of $Y$ is an $F_\sigma$-set in $Y$ (or $A$ is an $F_\sigma$-subset of $Y$) if $A$ is the union of countably closed subsets of the space $Y$. Of course, the set $A$ is a $G_\delta$-set if and only if $Y-A$, the complement of $A$, is an $F_\sigma$-set.

The diagonal of the space $X$ is the set $\Delta=\{ (x,x): x \in X \}$, which is a subset of the square $X \times X$. When the set $\Delta$ is a $G_\delta$-set in the space $X \times X$, we say that the space $X$ has a $G_\delta$-diagonal.

It is straightforward to verify that the space $X$ is a Hausdorff space if and only if the diagonal $\Delta$ is a closed subset of $X \times X$. As a result, if $X$ is a Hausdorff space such that $X \times X$ is perfectly normal, then the diagonal would be a closed set and thus a $G_\delta$-set. Such spaces, including metric spaces, would have a $G_\delta$-diagonal. Thus any metric space has a $G_\delta$-diagonal.

A space $X$ is submetrizable if there is a metrizable topology that is weaker than the topology for $X$. Then the diagonal $\Delta$ would be a $G_\delta$-set with respect to the weaker metrizable topology of $X \times X$ and thus with respect to the orginal topology of $X$. This means that the class of spaces having $G_\delta$-diagonals also include the submetrizable spaces. As a result, Sorgenfrey line and Michael line have $G_\delta$-diagonals since the Euclidean topology are weaker than both topologies.

A space having a $G_\delta$-diagonal is a simple topological property. Such spaces form a wide class of spaces containing many familiar spaces. According to the authors in [2], the property of having a $G_\delta$-diagonal is an important ingredient of submetrizability and metrizability. For example, any compact space with a $G_\delta$-diagonal is metrizable (see this blog post). Any paracompact or Lindelof space with a $G_\delta$-diagonal is submetrizable. Spaces with $G_\delta$-diagonals are also interesting in their own right. It is a property that had been research extensively. It is also a current research topic; see [7].

A Closer Look

To make the discussion more interesting, let’s point out a few essential definitions and notations. Let $X$ be a space. Let $\mathcal{U}$ be a collection of subsets of $X$. Let $A \subset X$. The notation $St(A, \mathcal{U})$ refers to the set $St(A, \mathcal{U})=\cup \{U \in \mathcal{U}: A \cap U \ne \varnothing \}$. In other words, $St(A, \mathcal{U})$ is the union of all the sets in $\mathcal{U}$ that intersect the set $A$. The set $St(A, \mathcal{U})$ is also called the star of the set $A$ with respect to the collection $\mathcal{U}$.

If $A=\{ x \}$, we write $St(x, \mathcal{U})$ instead of $St(\{ x \}, \mathcal{U})$. Then $St(x, \mathcal{U})$ refers to the union of all sets in $\mathcal{U}$ that contain the point $x$. The set $St(x, \mathcal{U})$ is then called the star of the point $x$ with respect to the collection $\mathcal{U}$.

Note that the statement of $X$ having a $G_\delta$-diagonal is defined by a statement about the product $X \times X$. It is desirable to have a translation that is a statement about the space $X$.

Theorem 1
Let $X$ be a space. Then the following statements are equivalent.

1. The space $X$ has a $G_\delta$-diagonal.
2. There exists a sequence $\mathcal{U}_0,\mathcal{U}_1,\mathcal{U}_2,\cdots$ of open covers of $X$ such that for each $x \in X$, $\{ x \}=\bigcap \{ St(x, \mathcal{U}_n): n=0,1,2,\cdots \}$.

The sequence of open covers in condition 2 is called a $G_\delta$-diagonal sequence for the space $X$. According to condition 2, at any given point, the stars of the point with respect to the open covers in the sequence collapse to the given point.

One advantage of a $G_\delta$-diagonal sequence is that it is entirely about points of the space $X$. Thus we can work with such sequences of open covers of $X$ instead of the $G_\delta$-set $\Delta$ in $X \times X$. Theorem 1 is not a word for word translation. However, the proof is quote natural.

Suppose that $\Delta=\cap \{U_n: n=0,1,2,\cdots \}$ where each $U_n$ is an open subset of $X \times X$. Then let $\mathcal{U}_n=\{U \subset X: U \text{ open and } U \times U \subset U_n \}$. It can be verify that $\mathcal{U}_0,\mathcal{U}_1,\mathcal{U}_2,\cdots$ is a $G_\delta$-diagonal sequence for $X$.

Suppose that $\mathcal{U}_0,\mathcal{U}_1,\mathcal{U}_2,\cdots$ is a $G_\delta$-diagonal sequence for $X$. For each $n$, let $U_n=\cup \{ U \times U: U \in \mathcal{U}_n \}$. It follows that $\Delta=\bigcap_{n=0}^\infty U_n$. $\square$

It is informative to compare the property of $G_\delta$-diagonal with the definition of Moore spaces. A development for the space $X$ is a sequence $\mathcal{D}_0,\mathcal{D}_1,\mathcal{D}_2,\cdots$ of open covers of $X$ such that for each $x \in X$, $\{ St(x, \mathcal{D}_n): n=0,1,2,\cdots \}$ is a local base at the point $x$. A space is said to be developable if it has a development. The space $X$ is said to be a Moore space if $X$ is a Hausdorff and regular space that has a development.

The stars of a given point with respect to the open covers of a development form a local base at the given point, and thus collapse to the given point. Thus a development is also a $G_\delta$-diagonal sequence. It then follows that any Moore space has a $G_\delta$-diagonal.

A point in a space is a $G_\delta$-point if the point is the intersection of countably many open sets. Then having a $G_\delta$-diagonal sequence implies that that every point of the space is a $G_\delta$-point since every point is the intersection of the stars of that point with respect to a $G_\delta$-diagonal sequence. In contrast, any Moore space is necessarily a first countable space since the stars of any given point with respect to the development is a countable local base at the given point. The parallel suggests that spaces with $G_\delta$-diagonals can be thought of as a weak form of Moore spaces (at least a weak form of developable spaces).

Regular G-delta Diagonal

We discuss other diagonal properties. The space $X$ is said to have a regular $G_\delta$-diagonal if $\Delta=\cap \{\overline{U_n}:n=0,1,2,\cdots \}$ where each $U_n$ is an open subset of $X \times X$ such that $\Delta \subset U_n$. This diagonal property also has an equivalent condition in terms of a diagonal sequence.

Theorem 2
Let $X$ be a space. Then the following statements are equivalent.

1. The space $X$ has a regular $G_\delta$-diagonal.
2. There exists a sequence $\mathcal{U}_0,\mathcal{U}_1,\mathcal{U}_2,\cdots$ of open covers of $X$ such that for every two distinct points $x,y \in X$, there exist open sets $U$ and $V$ with $x \in U$ and $y \in V$ and there also exists an $n$ such that no member of $\mathcal{U}_n$ intersects both $U$ and $V$.

For convenience, we call the sequence described in Theorem 2 a regular $G_\delta$-diagonal sequence. It is clear that if the diagonal of a space is a regular $G_\delta$-diagonal, then it is a $G_\delta$-diagonal. It can also be verified that a regular $G_\delta$-diagonal sequence is also a $G_\delta$-diagonal sequence. To see this, let $\mathcal{U}_0,\mathcal{U}_1,\mathcal{U}_2,\cdots$ be a regular $G_\delta$-diagonal sequence for $X$. Suppose that $y \ne x$ and $y \in \bigcap_k St(x, \mathcal{U}_k)$. Choose open sets $U$ and $V$ and an integer $n$ guaranteed by the regular $G_\delta$-diagonal sequence. Since $y \in St(x, \mathcal{U}_n)$, choose $B \in \mathcal{U}_n$ such that $x,y \in B$. Then $B$ would be an element of $\mathcal{U}_n$ that meets both $U$ and $V$, a contradiction. Then $\{ x \}= \bigcap_k St(x, \mathcal{U}_k)$ for all $x \in X$.

To proof Theorem 2, suppose that $X$ has a regular $G_\delta$-diagonal. Let $\Delta=\bigcap_{k=0}^\infty \overline{U_k}$ where each $U_k$ is open in $X \times X$ and $\Delta \subset U_k$. For each $k$, let $\mathcal{U}_k$ be the collection of all open subsets $U$ of $X$ such that $U \times U \subset U_k$. It can be verified that $\{ \mathcal{U}_k \}$ is a regular $G_\delta$-diagonal sequence for $X$.

On the other hand, suppose that $\{ \mathcal{U}_k \}$ is a regular $G_\delta$-diagonal sequence for $X$. For each $k$, let $U_k=\cup \{U \times U: U \in \mathcal{U}_k \}$. It can be verified that $\Delta=\bigcap_{k=0}^\infty \overline{U_k}$. $\square$

Rank-k Diagonals

Metric spaces and submetrizable spaces have regular $G_\delta$-diagonals. We discuss this fact after introducing another set of diagonal properties. First some notations. For any family $\mathcal{U}$ of subsets of the space $X$ and for any $x \in X$, define $St^1(x, \mathcal{U})=St(x, \mathcal{U})$. For any integer $k \ge 2$, let $St^k(x, \mathcal{U})=St^{k-1}(St(x, \mathcal{U}))$. Thus $St^{2}(x, \mathcal{U})$ is the star of the star $St(x, \mathcal{U})$ with respect to $\mathcal{U}$ and $St^{3}(x, \mathcal{U})$ is the star of $St^{2}(x, \mathcal{U})$ and so on.

Let $X$ be a space. A sequence $\mathcal{U}_0,\mathcal{U}_1,\mathcal{U}_2,\cdots$ of open covers of $X$ is said to be a rank-$k$ diagonal sequence of $X$ if for each $x \in X$, we have $\{ x \}=\bigcap_{j=0}^\infty St^k(x,\mathcal{U}_j)$. When the space $X$ has a rank-$k$ diagonal sequence, the space is said to have a rank-$k$ diagonal. Clearly a rank-1 diagonal sequence is simply a $G_\delta$-diagonal sequence as defined in Theorem 1. Thus having a rank-1 diagonal is the same as having a $G_\delta$-diagonal.

It is also clear that having a higher rank diagonal implies having a lower rank diagonal. This follows from the fact that a rank $k+1$ diagonal sequence is also a rank $k$ diagonal sequence.

The following lemma builds intuition of the rank-$k$ diagonal sequence. For any two distinct points $x$ and $y$ of a space $X$, and for any integer $d \ge 2$, a $d$-link path from $x$ to $y$ is a set of open sets $W_1,W_2,\cdots,W_d$ such that $x \in W_1$, $y \in W_d$ and $W_t \cap W_{t+1} \ne \varnothing$ for all $t=1,2,\cdots,d-1$. By default, a single open set $W$ containing both $x$ and $y$ is a d-link path from $x$ to $y$ for any integer $d \ge 1$.

Lemma 3
Let $X$ be a space. Let $k$ be a positive integer. Let $\mathcal{U}_0,\mathcal{U}_1,\mathcal{U}_2,\cdots$ be a sequence of open covers of $X$. Then the following statements are equivalent.

1. The sequence $\mathcal{U}_0,\mathcal{U}_1,\mathcal{U}_2,\cdots$ is a rank-$k$ diagonal sequence for the space $X$.
2. For any two distinct points $x$ and $y$ of $X$, there is an integer $n$ such that $y \notin St^k(x,\mathcal{U}_n)$.
3. For any two distinct points $x$ and $y$ of $X$, there is an integer $n$ such that there is no $k$-link path from $x$ to $y$ consisting of elements of $\mathcal{U}_n$.

It can be seen directly from definition that Condition 1 and Condition 2 are equivalent. For Condition 3, observe that the set $St^k(x,\mathcal{U}_n)$ is the union of $k$ types of open sets – open sets in $\mathcal{U}_n$ containing $x$, open sets in $\mathcal{U}_n$ that intersect the first type, open sets in $\mathcal{U}_n$ that intersect the second type and so on down to the open sets in $\mathcal{U}_n$ that intersect $St^{k-1}(x,\mathcal{U}_n)$. A path is formed by taking one open set from each type.

We now show a few basic results that provide further insight on the rank-$k$ diagonal.

Theorem 4
Let $X$ be a space. If the space $X$ has a rank-2 diagonal, then $X$ is a Hausdorff space.

Theorem 5
Let $X$ be a Moore space. Then $X$ has a rank-2 diagonal.

Theorem 6
Let $X$ be a space. If $X$ has a rank-3 diagonal, then $X$ has a regular $G_\delta$-diagonal.

Once Lemma 3 is understood, Theorem 4 is also easily understood. If a space $X$ has a rank-2 diagonal sequence $\{ \mathcal{U}_n \}$, then for any two distinct points $x$ and $y$, we can always find an $n$ where there is no 2-link path from $x$ to $y$. Then $x$ and $y$ can be separated by open sets in $\mathcal{U}_n$. Thus these diagonal ranking properties confer separation axioms. We usually start off a topology discussion by assuming a reasonable separation axiom (usually implicitly). The fact that the diagonal ranking gives a bonus makes it even more interesting. Apparently many authors agree since $G_\delta$-diagonal and related topics had been researched extensively over decades.

To prove Theorem 5, let $\{ \mathcal{U}_n \}$ be a development for the space $X$. Let $x$ and $y$ be two distinct points of $X$. We claim that there exists some $n$ such that $y \notin St^2(x,\mathcal{U}_n)$. Suppose not. This means that for each $n$, $y \in St^2(x,\mathcal{U}_n)$. This also means that $St(x,\mathcal{U}_n) \cap St(y,\mathcal{U}_n) \ne \varnothing$ for each $n$. Choose $x_n \in St(x,\mathcal{U}_n) \cap St(y,\mathcal{U}_n)$ for each $n$. Since $X$ is a Moore space, $\{ St(x,\mathcal{U}_n) \}$ is a local base at $x$. Then $\{ x_n \}$ converges to $x$. Since $\{ St(y,\mathcal{U}_n) \}$ is a local base at $y$, $\{ x_n \}$ converges to $y$, a contradiction. Thus the claim that there exists some $n$ such that $y \notin St^2(x,\mathcal{U}_n)$ is true. By Lemma 3, a development for a Moore space is a rank-2 diagonal sequence.

To prove Theorem 6, let $\{ \mathcal{U}_n \}$ be a rank-3 diagonal sequence for the space $X$. We show that $\{ \mathcal{U}_n \}$ is also a regular $G_\delta$-diagonal sequence for $X$. Suppose $x$ and $y$ are two distinct points of $X$. By Lemma 3, there exists an $n$ such that there is no 3-link path consisting of open sets in $\mathcal{U}_n$ that goes from $x$ to $y$. Choose $U \in \mathcal{U}_n$ with $x \in U$. Choose $V \in \mathcal{U}_n$ with $y \in V$. Then it follows that no member of $\mathcal{U}_n$ can intersect both $U$ and $V$ (otherwise there would be a 3-link path from $x$ to $y$). Thus $\{ \mathcal{U}_n \}$ is also a regular $G_\delta$-diagonal sequence for $X$.

We now show that metric spaces have rank-$k$ diagonal for all integer $k \ge 1$.

Theorem 7
Let $X$ be a metrizable space. Then $X$ has rank-$k$ diagonal for all integers $k \ge 1$.

If $d$ is a metric that generates the topology of $X$, and if $\mathcal{U}_n$ is the collection of all open subsets with diameters $\le 2^{-n}$ with respect to the metrix $d$ then $\{ \mathcal{U}_n \}$ is a rank-$k$ diagonal sequence for $X$ for any integer $k \ge 1$.

We instead prove Theorem 7 topologically. To this end, we use an appropriate metrization theorem. The following theorem is a good candidate.

Alexandrov-Urysohn Metrization Theorem. A space $X$ is metrizable if and only if the space $X$ has a development $\{ \mathcal{U}_n \}$ such that for any $U_1,U_2 \in \mathcal{U}_{n+1}$ with $U_1 \cap U_2 \ne \varnothing$, the set $U_1 \cup U_2$ is contained in some element of $\mathcal{U}_n$. See Theorem 1.5 in p. 427 of [5].

Let $\{ \mathcal{U}_n \}$ be the development from Alexandrov-Urysohn Metrization Theorem. It is a development with a strong property. Each open cover in the development refines the preceding open cover in a special way. This refinement property allows us to show that it is a rank-$k$ diagonal sequence for $X$ for any integer $k \ge 1$.

First, we make a few observations about $\{ \mathcal{U}_n \}$. From the statement of the theorem, each $\mathcal{U}_{n+1}$ is a refinement of $\mathcal{U}_n$. As a result of this observation, $\mathcal{U}_{m}$ is a refinement of $\mathcal{U}_n$ for any $m>n$. Furthermore, for each $x \in X$, $\text{St}(x,\mathcal{U}_m) \subset \text{St}(x,\mathcal{U}_n)$ for any $m>n$.

Let $x, y \in X$ with $x \ne y$. Based on the preceding observations, it follows that there exists some $m$ such that $\text{St}(x,\mathcal{U}_m) \cap \text{St}(y,\mathcal{U}_m)=\varnothing$. We claim that there exists some integer $h>m$ such that there are no $k$-link path from $x$ to $y$ consisting of open sets from $\mathcal{U}_h$. Then $\{ \mathcal{U}_n \}$ is a rank-$k$ diagonal sequence for $X$ according to Lemma 3.

We show this claim is true for $k=2$. Observe that there cannot exist $U_1, U_2 \in \mathcal{U}_{m+1}$ such that $x \in U_1$, $y \in U_2$ and $U_1 \cap U_2 \ne \varnothing$. If there exists such a pair, then $U_1 \cup U_2$ would be contained in $\text{St}(x,\mathcal{U}_m)$ and $\text{St}(y,\mathcal{U}_m)$, a contradiction. Putting it in another way, there cannot be any 2-link path $U_1,U_2$ from $x$ to $y$ such that the open sets in the path are from $\mathcal{U}_{m+1}$. According to Lemma 3, the sequence $\{ \mathcal{U}_n \}$ is a rank-2 diagonal sequence for the space $X$.

In general for any $k \ge 2$, there cannot exist any $k$-link path $U_1,\cdots,U_k$ from $x$ to $y$ such that the open sets in the path are from $\mathcal{U}_{m+k-1}$. The argument goes just like the one for the case for $k=2$. Suppose the path $U_1,\cdots,U_k$ exists. Using the special property of $\{ \mathcal{U}_n \}$, the 2-link path $U_1,U_2$ is contained in some open set in $\mathcal{U}_{m+k-2}$. The path $U_1,\cdots,U_k$ is now contained in a $(k-1)$-link path consisting of elements from the open cover $\mathcal{U}_{m+k-2}$. Continuing the refinement process, the path $U_1,\cdots,U_k$ is contained in a 2-link path from $x$ to $y$ consisting of elements from $\mathcal{U}_{m+1}$. Like before this would lead to a contradiction. According to Lemma 3, $\{ \mathcal{U}_n \}$ is a rank-$k$ diagonal sequence for the space $X$ for any integer $k \ge 2$.

Of course, any metric space already has a $G_\delta$-diagonal. We conclude that any metrizable space has a rank-$k$ diagonal for any integer $k \ge 1$. $\square$

We have the following corollary.

Corollary 8
Let $X$ be a submetrizable space. Then $X$ has rank-$k$ diagonal for all integer $k \ge 1$.

In a submetrizable space, the weaker metrizable topology has a rank-$k$ diagonal sequence, which in turn is a rank-$k$ diagonal sequence in the original topology.

Examples and Questions

The preceding discussion focuses on properties that are in between $G_\delta$-diagonal and submetrizability. In fact, one of the properties has infinitely many levels (rank-$k$ diagonal for integers $k \ge 1$). We would like to have a diagram showing the relative strengths of these properties. Before we do so, consider one more diagonal property.

Let $X$ be a space. The set $A \subset X$ is said to be a zero-set in $X$ if there is a continuous $f:X \rightarrow [0,1]$ such that $A=f^{-1}(0)$. In other words, a zero-set is a set that is the inverse image of zero for some continuous real-valued function defined on the space in question.

A space $X$ has a zero-set diagonal if the diagonal $\Delta=\{ (x,x): x \in X \}$ is a zero-set in $X \times X$. The space $X$ having a zero-set diagonal implies that $X$ has a regular $G_\delta$-diagonal, and thus a $G_\delta$-diagonal. To see this, suppose that $\Delta=f^{-1}(0)$ where $f:X \times X \rightarrow [0,1]$ is continuous. Then $\Delta=\bigcap_{n=1}^\infty \overline{U_n}$ where $U_n=f^{-1}([0,1/n))$. Thus having a zero-set diagonal is a strong property.

We have the following diagram.

The diagram summarizes the preceding discussion. From top to bottom, the stronger properties are at the top. From left to right, the stronger properties are on the left. The diagram shows several properties in between $G_\delta$-diagonal at the bottom and submetrizability at the top.

Note that the statement at the very bottom is not explicitly a diagonal property. It is placed at the bottom because of the classic result that any compact space with a $G_\delta$-diagonal is metrizable.

In the diagram, “rank-k diagonal” means that the space has a rank-$k$ diagonal where $k \ge 1$ is an integer, which in terms means that the space has a rank-$k$ diagonal sequence as defined above. Thus rank-$k$ diagonal is not to be confused with the rank of a diagonal. The rank of the diagonal of a given space is the largest integer $k$ such that the space has a rank-$k$ diagonal. For example, for a space that has a rank-2 diagonal but has no rank-3 diagonal, the rank of the diagonal is 2.

To further make sense of the diagram, let’s examine examples.

The Mrowka space is a classic example of a space with a $G_\delta$-diagonal that is not submetrizable (introduced here). Where is this space located in the diagram? The Mrowka space, also called Psi-space, is defined using a maximal almost disjoint family of subsets of $\omega$. We denote such a space by $\Psi(\mathcal{A})$ where $\mathcal{A}$ is a maximal almost disjoint family of subsets of $\omega$. It is a pseudocompact Moore space that is not submetrizable. As a Moore space, it has a rank-2 diagonal sequence. A well known result states that any pseudocompact space with a regular $G_\delta$-diagonal is metrizable (see here). As a non-submetrizable space, the Mrowka space cannot have a regular $G_\delta$-diagonal. Thus $\Psi(\mathcal{A})$ is an example of a space with a rank-2 diagonal but not a rank-3 diagonal sequence.

Examples of non-submetrizable spaces with stronger diagonal properties are harder to come by. We discuss examples that are found in the literature.

Example 2.9 in [2] is a Tychonoff separable Moore space $Z$ that has a rank-3 diagonal but not of higher diagonal rank. As a result of not having a rank-4 diagonal, $Z$ is not submetrizable. Thus $Z$ is an example of a space with rank-3 diagonal (hence with a regular $G_\delta$-diagonal) that is not submetrizable. According to a result in [6], any separable space with a zero-set diagonal is submetrizable. Then the space $Z$ is an example of a space with a regular $G_\delta$-diagonal that does not have a zero-set diagonal. In fact, the authors of [2] indicated that this is the first such example.

Example 2.9 of [2] shows that having a rank-3 diagonal does not imply having a zero-set diagonal. If a space is strengthened to have a rank-4 diagonal, does it imply having a zero-set diagonal? This is essentially Problem 2.13 in [2].

On the other hand, having a rank-3 diagonal implies a rank-2 diagonal. If we weaken the hypothesis to just having a regular regular $G_\delta$-diagonal, does it imply having a rank-2 diagonal? This is essentially Problem 2.14 in [2].

The authors of [2] conjectured that for each $n$, there exists a space $X_n$ with a rank-$n$ diagonal but not having a rank-$(n+1)$ diagonal. This conjecture was answered affirmatively in [8] by constructing, for each integer $k \ge 4$, a Tychonoff space with a rank-$k$ diagonal but not having a rank-$(k+1)$ diagonal. Thus even for high $k$, a non-submetrizable space can be found with rank-$k$ diagonal.

One natural question is this. Is there a non-submetrizable space that has rank-$k$ diagonal for all $k \ge 1$? We have not seen this question stated in the literature. But it is clearly a natural question.

Example 2.17 in [2] is a non-submetrizable Moore space that has a zero-set diagonal and has rank-3 diagonal exactly (i.e. it does not have a higher rank diagonal). This example shows that having a zero-set diagonal does not imply having a rank-4 diagonal. A natural question is then this. Does having a zero-set diagonal imply having a rank-3 diagonal? This appears to be an open question. This is hinted by Problem 2.19 in [2]. It asks, if $X$ is a normal space with a zero-set diagonal, does $X$ have at least a rank-2 diagonal?

The property of having a $G_\delta$-diagonal and related properties is a topic that had been researched extensively over the decades. It is still an active topic of research. The discussion in this post only touches on the surface. There are many other diagonal properties not covered here. To further investigate, check with the papers listed below and also consult with information available in the literature.

Reference

1. Arhangelskii A. V., Burke D. K., Spaces with a regular $G_\delta$-diagonal, Topology and its Applications, Vol. 153, No. 11, 1917–1929, 2006.
2. Arhangelskii A. V., Buzyakova R. Z., The rank of the diagonal and submetrizability, Comment. Math. Univ. Carolinae, Vol. 47, No. 4, 585-597, 2006.
3. Buzyakova R. Z., Cardinalities of ccc-spaces with regular $G_\delta$-diagonals, Topology and its Applications, Vol. 153, 1696–1698, 2006.
4. Buzyakova R. Z., Observations on spaces with zeroset or regular $G_\delta$-diagonals, Comment. Math. Univ. Carolinae, Vol. 46, No. 3, 469-473, 2005.
5. Gruenhage, G., Generalized Metric Spaces, Handbook of Set-Theoretic Topology (K. Kunen and J. E. Vaughan, eds), Elsevier Science Publishers B. V., Amsterdam, 423-501, 1984.
6. Martin H. W., Contractibility of topological spaces onto metric spaces, Pacific J. Math., Vol. 61, No. 1, 209-217, 1975.
7. Xuan Wei-Feng, Shi Wei-Xue, On spaces with rank k-diagonals or zeroset diagonals, Topology Proceddings, Vol. 51, 245{251, 2018.
8. Yu Zuoming, Yun Ziqiu, A note on the rank of diagonals, Topology and its Applications, Vol. 157, 1011–1014, 2010.

$\text{ }$

$\text{ }$

$\text{ }$

Dan Ma math

Daniel Ma mathematics

$\copyright$ 2018 – Dan Ma

# Pseudocompact spaces with regular G-delta diagonals

This post complements two results discussed in two previous blog posts concerning $G_\delta$-diagonal. One result is that any compact space with a $G_\delta$-diagonal is metrizable (see here). The other result is that the compactness in the first result can be relaxed to countably compactness. Thus any countably compact space with a $G_\delta$-diagonal is metrizable (see here). The countably compactness in the second result cannot be relaxed to pseudocompactness. The Mrowka space is a pseudocompact space with a $G_\delta$-diagonal that is not submetrizable, hence not metrizable (see here). However, if we strengthen the $G_\delta$-diagonal to a regular $G_\delta$-diagonal while keeping pseudocompactness fixed, then we have a theorem. We prove the following theorem.

Theorem 1
If the space $X$ is pseudocompact and has a regular $G_\delta$-diagonal, then $X$ is metrizable.

All spaces are assumed to be Hausdorff and completely regular. The assumption of completely regular is crucial. The proof of Theorem 1 relies on two lemmas concerning pseudocompact spaces (one proved in a previous post and one proved here). These two lemmas work only for completely regular spaces.

The proof of Theorem 1 uses a metrization theorem. The best metrization to use in this case is Moore metrization theorem (stated below). The result in Theorem 1 is found in [2].

First some basics. Let $X$ be a space. The diagonal of the space $X$ is the set $\Delta=\{ (x,x): x \in X \}$. When the diagonal $\Delta$, as a subset of $X \times X$, is a $G_\delta$-set, i.e. $\Delta$ is the intersection of countably many open subsets of $X \times X$, the space $X$ is said to have a $G_\delta$-diagonal.

The space $X$ is said to have a regular $G_\delta$-diagonal if the diagonal $\Delta$ is a regular $G_\delta$-set in $X \times X$, i.e. $\Delta=\bigcap_{n=1}^\infty \overline{U_n}$ where each $U_n$ is an open subset of $X \times X$ with $\Delta \subset U_n$. If $\Delta=\bigcap_{n=1}^\infty \overline{U_n}$, then $\Delta=\bigcap_{n=1}^\infty \overline{U_n}=\bigcap_{n=1}^\infty U_n$. Thus if a space has a regular $G_\delta$-diagonal, it has a $G_\delta$-diagonal. We will see that there exists a space with a $G_\delta$-diagonal that fails to be a regular $G_\delta$-diagonal.

The space $X$ is a pseudocompact space if for every continuous function $f:X \rightarrow \mathbb{R}$, the image $f(X)$ is a bounded set in the real line $\mathbb{R}$. Pseudocompact spaces are discussed in considerable details in this previous post. We will rely on results from this previous post to prove Theorem 1.

The following lemma is used in proving Theorem 1.

Lemma 2
Let $X$ be a pseudocompact space. Suppose that $O_1,O_2,O_2,\cdots$ is a decreasing sequence of non-empty open subsets of $X$ such that $\bigcap_{n=1}^\infty O_n=\bigcap_{n=1}^\infty \overline{O_n}=\{ x \}$ for some point $x \in X$. Then $\{ O_n \}$ is a local base at the point $x$.

Proof of Lemma 2
Let $O_1,O_2,O_2,\cdots$ be a decreasing sequence of open subsets of $X$ such that $\bigcap_{n=1}^\infty O_n=\bigcap_{n=1}^\infty \overline{O_n}=\{ x \}$. Let $U$ be open in $X$ with $x \in U$. If $O_n \subset U$ for some $n$, then we are done. Suppose that $O_n \not \subset U$ for each $n$.

Choose open $V$ with $x \in V \subset \overline{V} \subset U$. Consider the sequence $\{ O_n \cap (X-\overline{V}) \}$. This is a decreasing sequence of non-empty open subsets of $X$. By Theorem 2 in this previous post, $\bigcap \overline{O_n \cap (X-\overline{V})} \ne \varnothing$. Let $y$ be a point in this non-empty set. Note that $y \in \bigcap_{n=1}^\infty \overline{O_n}$. This means that $y=x$. Since $x \in \overline{O_n \cap (X-\overline{V})}$ for each $n$, any open set containing $x$ would contain a point not in $\overline{V}$. This is a contradiction since $x \in V$. Thus it must be the case that $x \in O_n \subset U$ for some $n$. $\square$

The following metrization theorem is useful in proving Theorem 1.

Theorem 3 (Moore Metrization Theorem)
Let $X$ be a space. Then $X$ is metrizable if and only if the following condition holds.

There exists a decreasing sequence $\mathcal{B}_1,\mathcal{B}_2,\mathcal{B}_3,\cdots$ of open covers of $X$ such that for each $x \in X$, the sequence $\{ St(St(x,\mathcal{B}_n),\mathcal{B}_n):n=1,2,3,\cdots \}$ is a local base at the point $x$.

For any family $\mathcal{U}$ of subsets of $X$, and for any $A \subset X$, the notation $St(A,\mathcal{U})$ refers to the set $\cup \{U \in \mathcal{U}: U \cap A \ne \varnothing \}$. In other words, it is the union of all sets in $\mathcal{U}$ that contain points of $A$. The set $St(A,\mathcal{U})$ is also called the star of the set $A$ with respect to the family $\mathcal{U}$. If $A=\{ x \}$, we write $St(x,\mathcal{U})$ instead of $St(\{ x \},\mathcal{U})$. The set $St(St(x,\mathcal{B}_n),\mathcal{B}_n)$ indicated in Theorem 3 is the star of the set $St(x,\mathcal{B}_n)$ with respect to the open cover $\mathcal{B}_n$.

Theorem 3 follows from Theorem 1.4 in [1], which states that for any $T_0$-space $X$, $X$ is metrizable if and only if there exists a sequence $\mathcal{G}_1, \mathcal{G}_2, \mathcal{G}_3,\cdots$ of open covers of $X$ such that for each open $U \subset X$ and for each $x \in U$, there exist an open $V \subset X$ and an integer $n$ such that $x \in V$ and $St(V,\mathcal{G}_n) \subset U$.

Proof of Theorem 1

Suppose $X$ is pseudocompact such that its diagonal $\Delta=\bigcap_{n=1}^\infty \overline{U_n}$ where each $U_n$ is an open subset of $X \times X$ with $\Delta \subset U_n$. We can assume that $U_1 \supset U_2 \supset \cdots$. For each $n \ge 1$, define the following:

$\mathcal{U}_n=\{ U \subset X: U \text{ open in } X \text{ and } U \times U \subset U_n \}$

Note that each $\mathcal{U}_n$ is an open cover of $X$. Also note that $\{ \mathcal{U}_n \}$ is a decreasing sequence since $\{ U_n \}$ is a decreasing sequence of open sets. We show that $\{ \mathcal{U}_n \}$ is a sequence of open covers of $X$ that satisfies Theorem 3. We establish this by proving the following claims.

Claim 1. For each $x \in X$, $\bigcap_{n=1}^\infty \overline{St(x,\mathcal{U}_n)}=\{ x \}$.

To prove the claim, let $x \ne y$. There is an integer $n$ such that $(x,y) \notin \overline{U_n}$. Choose open sets $U$ and $V$ such that $(x,y) \in U \times V$ and $(U \times V) \cap \overline{U_n}=\varnothing$. Note that $(x,y) \notin U_k$ and $(U \times V) \cap U_n=\varnothing$.

We want to show that $V \cap St(x,\mathcal{U}_n)=\varnothing$, which implies that $y \notin \overline{St(x,\mathcal{U}_n)}$. Suppose $V \cap St(x,\mathcal{U}_n) \ne \varnothing$. This means that $V \cap W \ne \varnothing$ for some $W \in \mathcal{U}_n$ with $x \in W$. Then $(U \times V) \cap (W \times W) \ne \varnothing$. Note that $W \times W \subset U_n$. This implies that $(U \times V) \cap U_n \ne \varnothing$, a contradiction. Thus $V \cap St(x,\mathcal{U}_n)=\varnothing$. Since $y \in V$, $y \notin \overline{St(x,\mathcal{U}_n)}$. We have established that for each $x \in X$, $\bigcap_{n=1}^\infty \overline{St(x,\mathcal{U}_n)}=\{ x \}$.

Claim 2. For each $x \in X$, $\{ St(x,\mathcal{U}_n) \}$ is a local base at the point $x$.

Note that $\{ St(x,\mathcal{U}_n) \}$ is a decreasing sequence of open sets such that $\bigcap_{n=1}^\infty \overline{St(x,\mathcal{U}_n)}=\{ x \}$. By Lemma 2, $\{ St(x,\mathcal{U}_n) \}$ is a local base at the point $x$.

Claim 3. For each $x \in X$, $\bigcap_{n=1}^\infty \overline{St(St(x,\mathcal{U}_n),\mathcal{U}_n)}=\{ x \}$.

Let $x \ne y$. There is an integer $n$ such that $(x,y) \notin \overline{U_n}$. Choose open sets $U$ and $V$ such that $(x,y) \in U \times V$ and $(U \times V) \cap \overline{U_n}=\varnothing$. It follows that $(U \times V) \cap \overline{U_t}=\varnothing$ for all $t \ge n$. Furthermore, $(U \times V) \cap U_t=\varnothing$ for all $t \ge n$. By Claim 2, choose integers $i$ and $j$ such that $St(x,\mathcal{U}_i) \subset U$ and $St(y,\mathcal{U}_j) \subset V$. Choose an integer $k \ge \text{max}(n,i,j)$. It follows that $(St(x,\mathcal{U}_i) \times St(y,\mathcal{U}_j)) \cap U_k=\varnothing$. Since $\mathcal{U}_k \subset \mathcal{U}_i$ and $\mathcal{U}_k \subset \mathcal{U}_j$, it follows that $(St(x,\mathcal{U}_k) \times St(y,\mathcal{U}_k)) \cap U_k=\varnothing$.

We claim that $St(y,\mathcal{U}_k) \cap St(St(x,\mathcal{U}_k), \mathcal{U}_k)=\varnothing$. Suppose not. Choose $w \in St(y,\mathcal{U}_k) \cap St(St(x,\mathcal{U}_k), \mathcal{U}_k)$. It follows that $w \in B$ for some $B \in \mathcal{U}_k$ such that $B \cap St(x,\mathcal{U}_k) \ne \varnothing$ and $B \cap St(y,\mathcal{U}_k) \ne \varnothing$. Furthermore $(St(x,\mathcal{U}_k) \times St(y,\mathcal{U}_k)) \cap (B \times B)=\varnothing$. Note that $B \times B \subset U_k$. This means that $(St(x,\mathcal{U}_k) \times St(y,\mathcal{U}_k)) \cap U_k \ne \varnothing$, contradicting the fact observed in the preceding paragraph. It must be the case that $St(y,\mathcal{U}_k) \cap St(St(x,\mathcal{U}_k), \mathcal{U}_k)=\varnothing$.

Because there is an open set containing $y$, namely $St(y,\mathcal{U}_k)$, that contains no points of $St(St(x,\mathcal{U}_k), \mathcal{U}_k)$, $y \notin \overline{St(St(x,\mathcal{U}_n),\mathcal{U}_n)}$. Thus Claim 3 is established.

Claim 4. For each $x \in X$, $\{ St(St(x,\mathcal{U}_n),\mathcal{U}_n)) \}$ is a local base at the point $x$.

Note that $\{ St(St(x,\mathcal{U}_n),\mathcal{U}_n) \}$ is a decreasing sequence of open sets such that $\bigcap_{n=1}^\infty \overline{St(St(x,\mathcal{U}_n),\mathcal{U}_n))}=\{ x \}$. By Lemma 2, $\{ St(St(x,\mathcal{U}_n),\mathcal{U}_n) \}$ is a local base at the point $x$.

In conclusion, the sequence $\mathcal{U}_1,\mathcal{U}_2,\mathcal{U}_3,\cdots$ of open covers satisfies the properties in Theorem 3. Thus any pseudocompact space with a regular $G_\delta$-diagonal is metrizable. $\square$

Example

Any submetrizable space has a $G_\delta$-diagonal. The converse is not true. A classic example of a non-submetrizable space with a $G_\delta$-diagonal is the Mrowka space (discussed here). The Mrowka space is also called the psi-space since it is sometimes denoted by $\Psi(\mathcal{A})$ where $\mathcal{A}$ is a maximal family of almost disjoint subsets of $\omega$. Actually $\Psi(\mathcal{A})$ would be a family of spaces since $\mathcal{A}$ is any maximal almost disjoint family. For any maximal $\mathcal{A}$, $\Psi(\mathcal{A})$ is a pseudocompact non-submetrizable space that has a $G_\delta$-diagonal. This example shows that the requirement of a regular $G_\delta$-diagonal in Theorem 1 cannot be weakened to a $G_\delta$-diagonal. See here for a more detailed discussion of this example.

Reference

1. Gruenhage, G., Generalized Metric Spaces, Handbook of Set-Theoretic Topology (K. Kunen and J. E. Vaughan, eds), Elsevier Science Publishers B. V., Amsterdam, 423-501, 1984.
2. McArthur W. G., $G_\delta$-Diagonals and Metrization Theorems, Pacific Journal of Mathematics, Vol. 44, No. 2, 613-317, 1973.

$\text{ }$

$\text{ }$

$\text{ }$

Dan Ma math

Daniel Ma mathematics

$\copyright$ 2018 – Dan Ma

# Michael Line Basics

Like the Sorgenfrey line, the Michael line is a classic counterexample that is covered in standard topology textbooks and in first year topology courses. This easily accessible example helps transition students from the familiar setting of the Euclidean topology on the real line to more abstract topological spaces. One of the most famous results regarding the Michael line is that the product of the Michael line with the space of the irrational numbers is not normal. Thus it is an important example in demonstrating the pathology in products of paracompact spaces. The product of two paracompact spaces does not even have be to be normal, even when one of the factors is a complete metric space. In this post, we discuss this classical result and various other basic results of the Michael line.

Let $\mathbb{R}$ be the real number line. Let $\mathbb{P}$ be the set of all irrational numbers. Let $\mathbb{Q}=\mathbb{R}-\mathbb{P}$, the set of all rational numbers. Let $\tau$ be the usual topology of the real line $\mathbb{R}$. The following is a base that defines a topology on $\mathbb{R}$.

$\mathcal{B}=\tau \cup \left\{\left\{ x \right\}: x \in \mathbb{P}\right\}$

The real line with the topology generated by $\mathcal{B}$ is called the Michael line and is denoted by $\mathbb{M}$. In essense, in $\mathbb{M}$, points in $\mathbb{P}$ are made isolated and points in $\mathbb{Q}$ retain the usual Euclidean open sets.

The Euclidean topology $\tau$ is coarser (weaker) than the Michael line topology (i.e. $\tau$ being a subset of the Michael line topology). Thus the Michael line is Hausdorff. Since the Michael line topology contains a metrizable topology, $\mathbb{M}$ is submetrizable (submetrized by the Euclidean topology). It is clear that $\mathbb{M}$ is first countable. Having uncountably many isolated points, the Michael line does not have the countable chain condition (thus is not separable). The following points are discussed in more details.

1. The space $\mathbb{M}$ is paracompact.
2. The space $\mathbb{M}$ is not Lindelof.
3. The extent of the space $\mathbb{M}$ is $c$ where $c$ is the cardinality of the real line.
4. The space $\mathbb{M}$ is not locally compact.
5. The space $\mathbb{M}$ is not perfectly normal, thus not metrizable.
6. The space $\mathbb{M}$ is not a Moore space, but has a $G_\delta$-diagonal.
7. The product $\mathbb{M} \times \mathbb{P}$ is not normal where $\mathbb{P}$ has the usual topology.
8. The product $\mathbb{M} \times \mathbb{P}$ is metacompact.
9. The space $\mathbb{M}$ has a point-countable base.
10. For each $n=1,2,3,\cdots$, the product $\mathbb{M}^n$ is paracompact.
11. The product $\mathbb{M}^\omega$ is not normal.
12. There exist a Lindelof space $L$ and a separable metric space $W$ such that $L \times W$ is not normal.

Results 10, 11 and 12 are shown in some subsequent posts.

___________________________________________________________________________________

Baire Category Theorem

Before discussing the Michael line in greater details, we point out one connection between the Michael line topology and the Euclidean topology on the real line. The Michael line topology on $\mathbb{Q}$ coincides with the Euclidean topology on $\mathbb{Q}$. A set is said to be a $G_\delta$-set if it is the intersection of countably many open sets. By the Baire category theorem, the set $\mathbb{Q}$ is not a $G_\delta$-set in the Euclidean real line (see the section called “Discussion of the Above Question” in the post A Question About The Rational Numbers). Thus the set $\mathbb{Q}$ is not a $G_\delta$-set in the Michael line. This fact is used in Result 5.

The fact that $\mathbb{Q}$ is not a $G_\delta$-set in the Euclidean real line implies that $\mathbb{P}$ is not an $F_\sigma$-set in the Euclidean real line. This fact is used in Result 7.

___________________________________________________________________________________

Result 1

Let $\mathcal{U}$ be an open cover of $\mathbb{M}$. We proceed to derive a locally finite open refinement $\mathcal{V}$ of $\mathcal{U}$. Recall that $\tau$ is the usual topology on $\mathbb{R}$. Assume that $\mathcal{U}$ consists of open sets in the base $\mathcal{B}$. Let $\mathcal{U}_\tau=\mathcal{U} \cap \tau$. Let $Y=\cup \mathcal{U}_\tau$. Note that $Y$ is a Euclidean open subspace of the real line (hence it is paracompact). Then there is $\mathcal{V}_\tau \subset \tau$ such that $\mathcal{V}_\tau$ is a locally finite open refinement $\mathcal{V}_\tau$ of $\mathcal{U}_\tau$ and such that $\mathcal{V}_\tau$ covers $Y$ (locally finite in the Euclidean sense). Then add to $\mathcal{V}_\tau$ all singleton sets $\left\{ x \right\}$ where $x \in \mathbb{M}-Y$ and let $\mathcal{V}$ denote the resulting open collection.

The resulting $\mathcal{V}$ is a locally finite open collection in the Michael line $\mathbb{M}$. Furthermore, $\mathcal{V}$ is also a refinement of the original open cover $\mathcal{U}$. $\blacksquare$

A similar argument shows that $\mathbb{M}$ is hereditarily paracompact.

___________________________________________________________________________________

Result 2

To see that $\mathbb{M}$ is not Lindelof, observe that there exist Euclidean uncountable closed sets consisting entirely of irrational numbers (i.e. points in $\mathbb{P}$). For example, it is possible to construct a Cantor set entirely within $\mathbb{P}$.

Let $C$ be an uncountable Euclidean closed set consisting entirely of irrational numbers. Then this set $C$ is an uncountable closed and discrete set in $\mathbb{M}$. In any Lindelof space, there exists no uncountable closed and discrete subset. Thus the Michael line $\mathbb{M}$ cannot be Lindelof. $\blacksquare$

___________________________________________________________________________________

Result 3

The argument in Result 2 indicates a more general result. First, a brief discussion of the cardinal function extent. The extent of a space $X$ is the smallest infinite cardinal number $\mathcal{K}$ such that every closed and discrete set in $X$ has cardinality $\le \mathcal{K}$. The extent of the space $X$ is denoted by $e(X)$. When the cardinal number $e(X)$ is $e(X)=\aleph_0$ (the first infinite cardinal number), the space $X$ is said to have countable extent, meaning that in this space any closed and discrete set must be countably infinite or finite. When $e(X)>\aleph_0$, there are uncountable closed and discrete subsets in the space.

It is straightforward to see that if a space $X$ is Lindelof, the extent is $e(X)=\aleph_0$. However, the converse is not true.

The argument in Result 2 exhibits a closed and discrete subset of $\mathbb{M}$ of cardinality $c$. Thus we have $e(\mathbb{M})=c$. $\blacksquare$

___________________________________________________________________________________

Result 4

The Michael line $\mathbb{M}$ is not locally compact at all rational numbers. Observe that the Michael line closure of any Euclidean open interval is not compact in $\mathbb{M}$. $\blacksquare$

___________________________________________________________________________________

Result 5

A set is said to be a $G_\delta$-set if it is the intersection of countably many open sets. A space is perfectly normal if it is a normal space with the additional property that every closed set is a $G_\delta$-set. In the Michael line $\mathbb{M}$, the set $\mathbb{Q}$ of rational numbers is a closed set. Yet, $\mathbb{Q}$ is not a $G_\delta$-set in the Michael line (see the discussion above on the Baire category theorem). Thus $\mathbb{M}$ is not perfectly normal and hence not a metrizable space. $\blacksquare$

___________________________________________________________________________________

Result 6

The diagonal of a space $X$ is the subset of its square $X \times X$ that is defined by $\Delta=\left\{(x,x): x \in X \right\}$. If the space is Hausdorff, the diagonal is always a closed set in the square. If $\Delta$ is a $G_\delta$-set in $X \times X$, the space $X$ is said to have a $G_\delta$-diagonal. It is well known that any metric space has $G_\delta$-diagonal. Since $\mathbb{M}$ is submetrizable (submetrized by the usual topology of the real line), it has a $G_\delta$-diagonal too.

Any Moore space has a $G_\delta$-diagonal. However, the Michael line is an example of a space with $G_\delta$-diagonal but is not a Moore space. Paracompact Moore spaces are metrizable. Thus $\mathbb{M}$ is not a Moore space. For a more detailed discussion about Moore spaces, see Sorgenfrey Line is not a Moore Space. $\blacksquare$

___________________________________________________________________________________

Result 7

We now show that $\mathbb{M} \times \mathbb{P}$ is not normal where $\mathbb{P}$ has the usual topology. In this proof, the following two facts are crucial:

• The set $\mathbb{P}$ is not an $F_\sigma$-set in the real line.
• The set $\mathbb{P}$ is dense in the real line.

Let $H$ and $K$ be defined by the following:

$H=\left\{(x,x): x \in \mathbb{P} \right\}$
$K=\mathbb{Q} \times \mathbb{P}$.

The sets $H$ and $K$ are disjoint closed sets in $\mathbb{M} \times \mathbb{P}$. We show that they cannot be separated by disjoint open sets. To this end, let $H \subset U$ and $K \subset V$ where $U$ and $V$ are open sets in $\mathbb{M} \times \mathbb{P}$.

To make the notation easier, for the remainder of the proof of Result 7, by an open interval $(a,b)$, we mean the set of all real numbers $t$ with $a. By $(a,b)^*$, we mean $(a,b) \cap \mathbb{P}$. For each $x \in \mathbb{P}$, choose an open interval $U_x=(a,b)^*$ such that $\left\{x \right\} \times U_x \subset U$. We also assume that $x$ is the midpoint of the open interval $U_x$. For each positive integer $k$, let $P_k$ be defined by:

$P_k=\left\{x \in \mathbb{P}: \text{ length of } U_x > \frac{1}{k} \right\}$

Note that $\mathbb{P}=\bigcup \limits_{k=1}^\infty P_k$. For each $k$, let $T_k=\overline{P_k}$ (Euclidean closure in the real line). It is clear that $\bigcup \limits_{k=1}^\infty P_k \subset \bigcup \limits_{k=1}^\infty T_k$. On the other hand, $\bigcup \limits_{k=1}^\infty T_k \not\subset \bigcup \limits_{k=1}^\infty P_k=\mathbb{P}$ (otherwise $\mathbb{P}$ would be an $F_\sigma$-set in the real line). So there exists $T_n=\overline{P_n}$ such that $\overline{P_n} \not\subset \mathbb{P}$. So choose a rational number $r$ such that $r \in \overline{P_n}$.

Choose a positive integer $j$ such that $\frac{2}{j}<\frac{1}{n}$. Since $\mathbb{P}$ is dense in the real line, choose $y \in \mathbb{P}$ such that $r-\frac{1}{j}. Now we have $(r,y) \in K \subset V$. Choose another integer $m$ such that $\frac{1}{m}<\frac{1}{j}$ and $(r-\frac{1}{m},r+\frac{1}{m}) \times (y-\frac{1}{m},y+\frac{1}{m})^* \subset V$.

Since $r \in \overline{P_n}$, choose $x \in \mathbb{P}$ such that $r-\frac{1}{m}. Now it is clear that $(x,y) \in V$. The following inequalities show that $(x,y) \in U$.

$\lvert x-y \lvert \le \lvert x-r \lvert + \lvert r-y \lvert < \frac{1}{m}+\frac{1}{j} \le \frac{2}{j} < \frac{1}{n}$

The open interval $U_x$ is chosen to have length $> \frac{1}{n}$. Since $\lvert x-y \lvert < \frac{1}{n}$, $y \in U_x$. Thus $(x,y) \in \left\{ x \right\} \times U_x \subset U$. We have shown that $U \cap V \ne \varnothing$. Thus $\mathbb{M} \times \mathbb{P}$ is not normal. $\blacksquare$

Remark
As indicated above, the proof of Result 7 hinges on two facts about $\mathbb{P}$, namely that it is not an $F_\sigma$-set in the real line and it is dense in the real line. We can modify the construction of the Michael line by using other partition of the real line (where one set is isolated and its complement retains the usual topology). As long as the set $D$ that is isolated is not an $F_\sigma$-set in the real line and is dense in the real line, the same proof will show that the product of the modified Michael line and the space $D$ (with the usual topology) is not normal. This will be how Result 12 is derived.

___________________________________________________________________________________

Result 8

The product $\mathbb{M} \times \mathbb{P}$ is not paracompact since it is not normal. However, $\mathbb{M} \times \mathbb{P}$ is metacompact.

A collection of subsets of a space $X$ is said to be point-finite if every point of $X$ belongs to only finitely many sets in the collection. A space $X$ is said to be metacompact if each open cover of $X$ has an open refinement that is a point-finite collection.

Note that $\mathbb{M} \times \mathbb{P}=(\mathbb{P} \times \mathbb{P}) \cup (\mathbb{Q} \times \mathbb{P})$. The first $\mathbb{P}$ in $\mathbb{P} \times \mathbb{P}$ is discrete (a subspace of the Michael line) and the second $\mathbb{P}$ has the Euclidean topology.

Let $\mathcal{U}$ be an open cover of $\mathbb{M} \times \mathbb{P}$. For each $a=(x,y) \in \mathbb{Q} \times \mathbb{P}$, choose $U_a \in \mathcal{U}$ such that $a \in U_a$. We can assume that $U_a=A \times B$ where $A$ is a usual open interval in $\mathbb{R}$ and $B$ is a usual open interval in $\mathbb{P}$. Let $\mathcal{G}=\lbrace{U_a:a \in \mathbb{Q} \times \mathbb{P}}\rbrace$.

Fix $x \in \mathbb{P}$. For each $b=(x,y) \in \lbrace{x}\rbrace \times \mathbb{P}$, choose some $U_b \in \mathcal{U}$ such that $b \in U_b$. We can assume that $U_b=\lbrace{x}\rbrace \times B$ where $B$ is a usual open interval in $\mathbb{P}$. Let $\mathcal{H}_x=\lbrace{U_b:b \in \lbrace{x}\rbrace \times \mathbb{P}}\rbrace$.

As a subspace of the Euclidean plane, $\bigcup \mathcal{G}$ is metacompact. So there is a point-finite open refinement $\mathcal{W}$ of $\mathcal{G}$. For each $x \in \mathbb{P}$, $\mathcal{H}_x$ has a point-finite open refinement $\mathcal{I}_x$. Let $\mathcal{V}$ be the union of $\mathcal{W}$ and all the $\mathcal{I}_x$ where $x \in \mathbb{P}$. Then $\mathcal{V}$ is a point-finite open refinement of $\mathcal{U}$.

Note that the point-finite open refinement $\mathcal{V}$ may not be locally finite. The vertical open intervals in $\lbrace{x}\rbrace \times \mathbb{P}$, $x \in \mathbb{P}$ can “converge” to a point in $\mathbb{Q} \times \mathbb{P}$. Thus, metacompactness is the best we can hope for. $\blacksquare$

___________________________________________________________________________________

Result 9

A collection of sets is said to be point-countable if every point in the space belongs to at most countably many sets in the collection. A base $\mathcal{G}$ for a space $X$ is said to be a point-countable base if $\mathcal{G}$, in addition to being a base for the space $X$, is also a point-countable collection of sets. The Michael line is an example of a space that has a point-countable base and that is not metrizable. The following is a point-countable base for $\mathbb{M}$:

$\mathcal{G}=\mathcal{H} \cup \left\{\left\{ x \right\}: x \in \mathbb{P}\right\}$

where $\mathcal{H}$ is the set of all Euclidean open intervals with rational endpoints. One reason for the interest in point-countable base is that any countable compact space (hence any compact space) with a point-countable base is metrizable (see Metrization Theorems for Compact Spaces).

___________________________________________________________________________________

Reference

1. Engelking, R., General Topology, Revised and Completed edition, Heldermann Verlag, Berlin, 1989.
2. Willard, S., General Topology, Addison-Wesley Publishing Company, 1970.

___________________________________________________________________________________

$\copyright \ \ 2012$

# Alexandroff Double Circle

We discuss the Alexandroff double circle, which is a compact and non-metrizable space. A theorem about the hereditarily normality of a product space $Y_1 \times Y_2$ is also discussed.

Let $C_1$ and $C_2$ be the two concentric circles centered at the origin with radii 1 and 2, respectively. Specifically $C_i=\left\{(x,y) \in \mathbb{R}^2: x^2 + y^2 =i \right\}$ where $i=1,2$. Let $X=C_1 \cup C_2$. Furthermore let $f:C_1 \rightarrow C_2$ be the natural homeomorphism. Figure 1 below shows the underlying set.

_______________________________________________________________
Figure 1 – Underlying Set

_______________________________________________________________

We define a topology on $X$ as follows:

• Points in $C_2$ are isolated.
• For each $x \in C_1$ and for each positive integer $j$, let $O(x,j)$ be the open arc in $C_1$ whose center contains $x$ and has length $\frac{1}{j}$ (in the Euclidean topology on $C_1$). For each $x \in C_1$, an open neighborhood is of the form $B(x,j)$ where
$\text{ }$

$B(x,j)=O(x,j) \cup (f(O(x,j))-\left\{f(x) \right\}$).

The following figure shows an open neighborhood at point in $C_1$.

_______________________________________________________________
Figure 2 – Open Neighborhood

___________________________________________________________________________________

A List of Results

It can be verified that the open neighborhoods defined above form a base for a topology on $X$. We discuss the following points about the Alexandroff double circle.

1. $X$ is a Hausdorff space.
2. $X$ is not separable.
3. $X$ is not hereditarily Lindelof.
4. $X$ is compact.
5. $X$ is sequentially compact.
6. $X$ is not metrizable.
7. $X$ is not perfectly normal.
8. $X$ is completely normal (and thus hereditarily normal).
9. $X \times X$ is not hereditarily normal.

The proof that $X \times X$ is not hereditarily normal can be generalized. We discuss this theorem after presenting the proof of Result 9.
___________________________________________________________________________________

Results 1, 2, 3

It is clear that the Alexandroff double circle is a Hausdorff space. It is not separable since the outer circle $C_2$ consists of uncountably many singleton open subsets. For the same reason, $C_2$ is a non-Lindelof subspace, making the Alexandroff double circle not hereditarily Lindelof. $\blacksquare$

___________________________________________________________________________________

Result 4

The property that $X$ is compact is closely tied to the compactness of the inner circle $C_1$ in the Euclidean topology. Note that the subspace topology of the Alexandroff double circle on $C_1$ is simply the Euclidean topology. Let $\mathcal{U}$ be an open cover of $X$ consisting of open sets as defined above. Then there are finitely many basic open sets $B(x_1,j_1)$, $B(x_2,j_2)$, $\cdots$, $B(x_n,j_n)$ from $\mathcal{U}$ covering $C_1$. These open sets cover the entire space except for the points $f(x_1), f(x_2), \cdots,f(x_n)$, which can be covered by finitely many open sets in $\mathcal{U}$. $\blacksquare$

___________________________________________________________________________________

Result 5

A space $W$ is sequentially compact if every sequence of points of $W$ has a subsequence that converges to a point in $W$. The notion of sequentially compactness and compactness coincide for the class of metric spaces. However, in general these two notions are distinct.

The sequentially compactness of the Alexandroff double circle $X$ hinges on the sequentially compactness of $C_1$ and $C_2$ in the Euclidean topology. Let $\left\{x_n \right\}$ be a sequence of points in $X$. If the set $\left\{x_n: n=1,2,3,\cdots \right\}$ is a finite set, then $\left\{x_n: n>m \right\}$ is a constant sequence for some large enough integer $m$. So assume that $A=\left\{x_n: n=1,2,3,\cdots \right\}$ is an infinite set. Either $A \cap C_1$ is infinite or $A \cap C_2$ is infinite. If $A \cap C_1$ is infinite, then some subsequence of $\left\{x_n \right\}$ converges in $C_1$ in the Euclidean topology (hence in the Alexandroff double circle topology). If $A \cap C_2$ is infinite, then some subsequence of $\left\{x_n \right\}$ converges to $x \in C_2$ in the Euclidean topology. Then this same subsequence converges to $f^{-1}(x)$ in the Alexandroff double circle topology. $\blacksquare$

___________________________________________________________________________________

Result 6

Note that any compact metrizable space satisfies a long list of properties, which include separable, Lindelof, hereditarily Lindelof. $\blacksquare$

___________________________________________________________________________________

Result 7

A space is perfectly normal if it is normal with the additional property that every closed set is a $G_\delta$-set. For the Alexandroff double circle, the inner circle $C_1$ is not a $G_\delta$-set, or equivalently the outer circle $C_2$ is not an $F_\sigma$-set. To see this, suppose that $C_2$ is the union of countably many sets, we show that the closure of at least one of the sets goes across to the inner circle $C_1$. Let $C_2=\bigcup \limits_{i=1}^\infty T_n$. At least one of the sets is uncountable. Let $T_j$ be one such. Consider $f^{-1}(T_j)$, which is also uncountable and has a limit point in $C_1$ (in the Euclidean topology). Let $t$ be one such point (i.e. every Euclidean open set containing $t$ contains points of $f^{-1}(T_j)$). Then the point $t$ is a member of the closure of $T_j$ (Alexandroff double circle topology). $\blacksquare$

___________________________________________________________________________________

Result 8

We first discuss the notion of separated sets. Let $T$ be a Hausdorff space. Let $E \subset T$ and $F \subset T$. The sets $E$ and $F$ are said to be separated (are separated sets) if $E \cap \overline{F}=\varnothing$ and $F \cap \overline{E}=\varnothing$. In other words, two sets are separated if each one does not meet the closure of the other set. In particular, any two disjoint closed sets are separated. The space $T$ is said to be completely normal if $T$ satisfies the property that for any two sets $E$ and $F$ that are separated, there are disjoint open sets $U$ and $V$ with $E \subset U$ and $F \subset V$. Thus completely normality implies normality.

It is a well know fact that if a space is completely normal, it is hereditarily normal (actually the two notions are equivalent). Note that any metric space is completely normal. In particular, any Euclidean space is completely normal.

To show that the Alexandroff double circle $X$ is completely normal, let $E \subset X$ and $F \subset X$ be separated sets. Thus we have $E \cap \overline{F}=\varnothing$ and $F \cap \overline{E}=\varnothing$. Note that $E \cap C_1$ and $F \cap C_1$ are separated sets in the Euclidean space $C_1$. Let $G_1$ and $G_2$ be disjoint Euclidean open subsets of $C_1$ with $E \cap C_1 \subset G_1$ and $F \cap C_1 \subset G_2$.

For each $x \in E \cap C_1$, choose open $U_x$ (Alexandroff double circle open) with $x \in U_x$, $U_x \cap C_1 \subset G_1$ and $U_x \cap \overline{F}=\varnothing$. Likewise, for each $y \in F \cap C_1$, choose open $V_y$ (Alexandroff double circle open) with $y \in V_y$, $V_y \cap C_1 \subset G_2$ and $V_y \cap \overline{E}=\varnothing$. Then let $U$ and $V$ be defined by the following:

$U=\biggl(\bigcup \limits_{x \in E \cap C_1} U_x \biggr) \cup \biggl(E \cap C_2 \biggr)$

$\text{ }$

$V= \biggl(\bigcup \limits_{y \in F \cap C_1} V_y \biggr) \cup \biggl(F \cap C_2 \biggr)$

Because $G_1 \cap G_2 =\varnothing$, the open sets $U_x$ and $V_y$ are disjoint. As a result, $U$ and $V$ are disjoint open sets in the Alexandroff double circle with $E \subset U$ and $F \subset V$.

For the sake of completeness, we show that any completely normal space is hereditarily normal. Let $T$ be completely normal. Let $Y \subset T$. Let $H \subset Y$ and $K \subset Y$ be disjoint closed subsets of $Y$. Then in the space $T$, $H$ and $K$ are separated. Note that $H \cap cl_T(K)=\varnothing$ and $K \cap cl_T(H)=\varnothing$ (where $cl_T$ gives the closure in $T$). Then there are disjoint open subsets $O_1$ and $O_2$ of $T$ such that $H \subset O_1$ and $K \subset O_2$. Now, $O_1 \cap Y$ and $O_2 \cap Y$ are disjoint open sets in $Y$ such that $H \subset O_1 \cap Y$ and $K \subset O_2 \cap Y$.

Thus we have established that the Alexandroff double circle is hereditarily normal. $\blacksquare$

For the proof that a space is completely normal if and only if it is hereditarily normal, see Theorem 2.1.7 in page 69 of [1],
___________________________________________________________________________________

Result 9

We produce a subspace $Y \subset X \times X$ that is not normal. To this end, let $D=\left\{d_n:n=1,2,3,\cdots \right\}$ be a countable subset of $X$ such that $\overline{D}-D\ne \varnothing$. Let $y \in \overline{D}-D$. Let $Y=X \times X-C_1 \times \left\{y \right\}$. We show that $Y$ is not normal.

Let $H=C_1 \times (X-\left\{y \right\})$ and $K=C_2 \times \left\{y \right\}$. These are two disjoint closed sets in $Y$. Let $U$ and $V$ be open in $Y$ such that $H \subset U$ and $K \subset V$. We show that $U \cap V \ne \varnothing$.

For each integer $j$, let $U_j=\left\{x \in X: (x,d_j) \in U \right\}$. We claim that each $U_j$ is open in $X$. To see this, pick $x \in U_j$. We know $(x,d_j) \in U$. There exist open $A$ and $B$ (open in $X$) such that $(x,d_j) \in A \times B \subset U$. It is clear that $x \in A \subset U_j$. Thus each $U_j$ is open.

Furthermore, we have $C_1 \subset U_j$ for each $j$. Based in Result 7, $C_1$ is not a $G_\delta$-set. So we have $C_1 \subset \bigcap \limits_{j=1}^\infty U_j$ but $C_1 \ne \bigcap \limits_{j=1}^\infty U_j$. There exists $t \in \bigcap \limits_{j=1}^\infty U_j$ but $t \notin C_1$. Thus $t \in C_2$ and $\left\{t \right\}$ is open.

Since $(t,y) \in K$, we have $(t,y) \in V$. Choose an open neighborhood $B(y,k)$ of $y$ such that $\left\{t \right\} \times B(y,k) \subset V$. since $y \in \overline{D}$, there exists some $d_j$ such that $(t,d_j) \in \left\{t \right\} \times B(y,k)$. Hence $(t,d_j) \in V$. Since $t \in U_j$, $(t,d_j) \in U$. Thus $U \cap V \ne \varnothing$. $\blacksquare$

___________________________________________________________________________________

Generalizing the Proof of Result 9

The proof of Result 9 requires that one of the factors has a countable set that is not discrete and the other factor has a closed set that is not a $G_\delta$-set. Once these two requirements are in place, we can walk through the same proof and show that the cross product is not hereditarily normal. Thus, the statement that is proved in Result 9 is the following.

Theorem
If $Y_1$ has a countable subset that is not closed and discrete and if $Y_2$ has a closed set that is not a $G_\delta$-set then $Y_1 \times Y_2$ has a subspace that is not normal.

The theorem can be restated as:

Theorem
If $Y_1 \times Y_2$ is hereditarily normal, then either every countable subset of $Y_1$ is closed and discrete or $Y_2$ is perfectly normal.

The above theorem is due to Katetov and can be found in [2]. It shows that the hereditarily normality of a cross product imposes quite strong restrictions on the factors. As a quick example, if both $Y_1$ and $Y_2$ are compact, for $Y_1 \times Y_2$ to be hereditarily normal, both $Y_1$ and $Y_2$ must be perfectly normal.

Another example. Let $W=\omega_1+1$, the succesor of the first uncountable ordinal with the order topology. Note that $W$ is not perfectly normal since the point $\omega_1$ is not a $G_\delta$ point. Then for any compact space $Y$, $W \times Y$ is not hereditarily normal. Let $C=\omega+1$, the successor of the first infinite ordinal with the order topology (essentially a convergent sequence with the limit point). The product $W \times C$ is the Tychonoff plank and based on the discussion here is not hereditarily normal. Usually the Tychonoff plank is shown to be not hereditarily normal by removing the cornor point $(\omega_1,\omega)$. The resulting space is the deleted Tychonoff plank and is not normal (see The Tychonoff Plank).

___________________________________________________________________________________

Reference

1. Engelking, R., General Topology, Revised and Completed edition, Heldermann Verlag, Berlin, 1989.
2. Przymusinski, T. C., Handbook of Set-Theoretic Topology (K. Kunen and J. E. Vaughan, eds), Elsevier Science Publishers B. V., Amsterdam, 781-826, 1984.
3. Willard, S., General Topology, Addison-Wesley Publishing Company, 1970.

___________________________________________________________________________________

$\copyright \ \ 2012$

# A Space with G-delta Diagonal that is not Submetrizable

The property of being submetrizable implies having a $G_\delta$-diagonal. There are several other properties lying between these two properties (see [1]). Before diving into these other properties, it may be helpful to investigate a classic example of a space with a $G_\delta$-diagonal that is not submetrizable.

The diagonal of a space $X$ is the set $\Delta=\left\{(x,x): x \in X \right\}$, a subset of the square $X \times X$. An interesting property is when the diagonal of a space is a $G_\delta$-set in $X \times X$ (the space is said to have a $G_\delta$-diagonal). Any compact space or a countably compact space with this property must be metrizable (see compact and countably compact space). A space $(X,\tau)$ is said to be submetrizable if there is a topology $\tau^*$ that can be defined on $X$ such that $(X,\tau^*)$ is a metrizable space and $\tau^* \subset \tau$. In other words, a submetrizable space is a space that has a coarser (weaker) metrizable topology. Every submetrizable space has a $G_\delta$-diagonal. Note that when $X$ has a weaker metric topology, the diagonal $\Delta$ is always a $G_\delta$-set in the metric square $X \times X$ (hence in the square in the original topology). The property of having a $G_\delta$-diagonal is strictly weaker than the property of having a weaker metric topology. In this post, we discuss the Mrowka space, which is a classic example of a space with a $G_\delta$-diagonal that is not submetrizable.

The Mrowka space (also called Psi space) was discussed previously in this blog (see this post). For the sake of completeness, the example is defined here.

First, we define some basic notions. Let $\omega$ be the first infinite ordinal (or more conveniently the set of all nonnegative integers). Let $\mathcal{A}$ be a family of infinite subsets of $\omega$. The family $\mathcal{A}$ is said to be an almost disjoint family if for each two distinct $A,B \in \mathcal{A}$, $A \cap B$ is finite. An almost disjoint family $\mathcal{A}$ is said to be a maximal almost disjoint family if $B$ is an infinite subset of $\omega$ such that $B \notin \mathcal{A}$, then $B \cap A$ is infinite for some $A \in \mathcal{A}$. In other words, if you put one more set into a maximal almost disjoint family, it ceases to be almost disjoint.

A natural question is whether there is an uncountable almost disjoint family of subsets of $\omega$. In fact, there is one whose cardinality is continuum (the cardinality of the real line). To see this, identify $\omega$ with $\mathbb{Q}=\lbrace{r_0,r_1,r_2,...}\rbrace$ (the set of all rational numbers). Let $\mathbb{P}=\mathbb{R}-\mathbb{Q}$ be the set of all irrational numbers. For each $x \in \mathbb{P}$, choose a subsequence of $\mathbb{Q}$ consisting of distinct elements that converges to $x$ (in the Euclidean topology). Then the family of all such sequences of rational numbers would be an almost disjoint family. By a Zorn’s Lemma argument, this almost disjoint family is contained within a maximal almost disjoint family. Thus we also have a maximal almost disjoint family of cardinality continuum. On the other hand, there is no countably infinite maximal almost disjoint family of subsets of $\omega$ (see this post).

Let $\mathcal{A}$ be an infinite almost disjoint family of subsets of $\omega$. We now define a Mrowka space (or $\Psi$-space), denoted by $\Psi(\mathcal{A})$. The underlying set is $\Psi(\mathcal{A})=\mathcal{A} \cup \omega$. Points in $\omega$ are isolated. For $A \in \mathcal{A}$, a basic open set is of the form $\lbrace{A}\rbrace \cup (A-F)$ where $F \subset \omega$ is finite. It is straightforward to verify that $\Psi(\mathcal{A})$ is Hausdorff, first countable and locally compact. It has a countable dense set of isolated points. Note that $\mathcal{A}$ is an infinite discrete and closed set in the space $\Psi(\mathcal{A})$. Thus $\Psi(\mathcal{A})$ is not countably compact.

We would like to point out that the definition of a Mrowka space $\Psi(\mathcal{A})$ only requires that the family $\mathcal{A}$ is an almost disjoint family and does not necessarily have to be maximal. For the example discribed in the title, $\mathcal{A}$ needs to be a maximal almost disjoint family of subsets of $\omega$.

__________________________________________________________________________

Example
Let $\mathcal{A}$ be a maximal almost disjoint family of subsets of $\omega$. Then $\Psi(\mathcal{A})$ as defined above is a space in which there is a $G_\delta$-diagonal that is not submetrizable.

Note that $\Psi(\mathcal{A})$ is pseudocompact (proved in this post). Because there is no countable maximal almost disjoint family of subsets of $\omega$, $\mathcal{A}$ must be an uncountable in addition to being a closed and discrete subspace of $\Psi(\mathcal{A})$ (thus the space is not Lindelof). Since $\Psi(\mathcal{A})$ is separable and is not Lindelof, $\Psi(\mathcal{A})$ is not metrizable. Any psuedocompact submetrizable space is metrizable (see Theorem 4 in this post). Thus $\Psi(\mathcal{A})$ must not be submetrizable.

On the other hand, any $\Psi$-space $\Psi(\mathcal{A})$ (even if $\mathcal{A}$ is not maximal) is a Moore space. It is well known that any Moore space has a $G_\delta$-diagonal. The remainder of this post has a brief discussion of Moore space.

__________________________________________________________________________

Moore Space

A sequence $\lbrace{\mathcal{D}_n}\rbrace_{n<\omega}$ of open covers of a space $X$ is a development for $X$ if for each $x \in X$ and each open set $U \subset X$ with $x \in U$, there is some $n$ such that any open set in $\mathcal{D}_n$ containing the point $x$ is contained in $U$. A developable space is one that has a development. A Moore space is a regular developable space.

Suppose that $X$ is a Moore space. We show that $X$ has a $G_\delta$-diagonal. That is, we wish to show that $\Delta=\left\{(x,x): x \in X \right\}$ is a $G_\delta$-set in $X \times X$.

Let $\lbrace{\mathcal{D}_n}\rbrace_{n<\omega}$ be a development. For each $n$, let $U_n=\bigcup \lbrace{V \times V:V \in \mathcal{D}_n}\rbrace$. Clearly $\Delta \subset \bigcap_{n<\omega} U_n$. Let $(x,y) \in \bigcap_{n<\omega} U_n$. For each $n$, $(x,y) \in V_n \times V_n$ for some $V_n \in \mathcal{D}_n$. We claim that $x=y$. Suppose that $x \ne y$. By the definition of development, there exists some $m$ such that every open set in $\mathcal{D}_m$ containing the point $x$ has to be a subset of $X-\left\{y \right\}$. Then $V_m \subset X-\left\{y \right\}$, which contradicts $y \in V_m$. Thus we have $\Delta = \bigcap_{n<\omega} U_n$.

The remaining thing to show is that $\Psi(\mathcal{A})$ is a Moore space. For each positive integer $n$, let $F_n=\left\{0,1,\cdots,n-1 \right\}$ and let $F_0=\varnothing$. The development is defined by $\lbrace{\mathcal{E}_n}\rbrace_{n<\omega}$, where for each $n$, $\mathcal{E}_n$ consists of open sets of the form $\lbrace{A}\rbrace \cup (A-F_n)$ where $A \in \mathcal{A}$ plus any singleton $\left\{j \right\}$ ($j \in \omega$) that has not been covered by the sets $\lbrace{A}\rbrace \cup (A-F_n)$.

Reference

1. Arhangel’skii, A. V., Buzyakova, R. Z., The rank of the diagonal and submetrizability, Commentationes Mathematicae Universitatis Carolinae, Vol. 47 (2006), No. 4, 585-597.
2. Engelking, R., General Topology, Revised and Completed edition, Heldermann Verlag, Berlin, 1989.
3. Willard, S., General Topology, Addison-Wesley Publishing Company, 1970.

# When is a Pseudocompact Space Metrizable?

Compactness, countably compactness and pseudocompactness are three successively weaker properties. It follows easily from definitions that

$(A) \ \ \ \ \ \text{compact} \Rightarrow \text{countably compact} \Rightarrow \text{pseudocompact}$

None of these arrows can be reversed. It is well known that either compactness or countably complactness plus having a $G_\delta$-diagonal implies metrizability. We have:

$(B) \ \ \ \ \ \text{compact} + \text{having a } G_\delta \text{-diagonal} \Rightarrow \text{metrizable}$

$(C) \ \ \ \ \ \text{countably compact} + \text{having a } G_\delta \text{-diagonal} \Rightarrow \text{metrizable}$

A question can be asked whether these results can be extended to pseudocompactness.

Question $(D) \ \ \ \ \ \text{pseudocompact compact} + \text{having a } G_\delta \text{-diagonal} \Rightarrow \text{metrizable?}$

The answer to this question is no. The space defined using a maximal almost disjoint family of subsets of $\omega$ is an example of a non-metrizable pseudocompact space with a $G_\delta$-diagonal (discussed in this post). In this post we show that if we strengthen “having a $G_\delta$-diagonal” to being submetrizable, we have a theorem. Specifically, we show:

$(E) \ \ \ \ \ \text{pseudocompact} + \text{submetrizable} \Rightarrow \text{metrizable}$

For the result of $(B)$, see this post. For the result of $(C)$, see this post. In this post, we discuss the basic properties of pseudocompactness that build up to the result of $(E)$. All spaces considered here are at least Tychonoff (i.e. completely regular). For any basic notions not defined here, see [1] or [2].

________________________________________________________________________

Pseudocompact Spaces

A space $X$ is said to be pseudocompact if every real-valued continuous function defined on $X$ is a bounded function. Any real-valued continuous function defined on a compact space must be bounded (and is thus pseudocomppact). If there were an unbounded real-valued continuous function defined on a space $X$, then $X$ would have a countably infinite discrete set (thus not countably compact). Thus countably compact implies pseudocompact, as indicated by $(A)$.

A space $X$ is submetrizable if there is a coarser (i.e. weaker) topology that is a metrizable topology. Specifically the topological space $(X,\tau)$ is submetrizable if there is another topology $\tau^*$ that can be defined on $X$ such that $\tau^* \subset \tau$ and $(X,\tau^*)$ is metrizable. The Sorgenfrey line is non-metrizable and yet the Sorgenfrey topology has a weaker topology that is metrizable, namely the Euclidean topology of the real line.

The following two theorems characterizes pseudocompact spaces in terms of locally finite open family of open sets (Theorem 1) and the finite intersection property (Theorem 2). Both theorems are found in Engelking (Theorem 3.10.22 and Theorem 3.10.23 in page 207 of [1]). Theorem 3 states that in a pseudocompact space, closed domains are pseudocompact (the definition of closed domain is stated before the theorem). Theorem 4 is the main theorem (result $E$ stated above).

Theorem 1
Let $X$ be a space. The following conditions are equivalent:

1. The space $X$ is pseudocompact.
2. If $\mathcal{V}$ is a locally finite family of non-empty open subsets of $X$, then $\mathcal{V}$ is finite.
3. If $\mathcal{V}$ is a locally finite open cover of $X$, then $\mathcal{V}$ is finite.
4. If $\mathcal{V}$ is a locally finite open cover of $X$, then $\mathcal{V}$ has a finite subcover.

Proof
$1 \Rightarrow 2$
Suppose that condition $2$ does not hold. Then there is an infinite locally finite family of non-empty open sets $\mathcal{V}$ such that $\mathcal{V}=\left\{V_1,V_2,V_3,\cdots \right\}$. We wish to define an unbounded continuous function using $\mathcal{V}$.

This is where we need to invoke the assumption of complete regularity. For each $n$ choose a point $x_n \in V_n$. Then for each $n$, there is a continuous function $f_n:X \rightarrow [0,n]$ such that $f_n(x_n)=n$ and $f_n(X-V_n) \subset \left\{ 0 \right\}$. Define $f:X \rightarrow [0,\infty)$ by $f(x)=f_1(x)+f_2(x)+f_3(x)+\cdots$.

Because $\mathcal{V}$ is locally finite, the function $f$ is essentially pointwise the sum of finitely many $f_n$. In other words, for each $x \in X$, for some positive integer $N$, $f_j(x)=0$ for all $j \ge N$. Thus the function $f$ is well defined and is continuous at each $x \in X$. Note that for each $x_n$, $f(x_n) \ge n$, showing that it is unbounded.

The directions $2 \Rightarrow 3$ and $3 \Rightarrow 4$ are clear.

$4 \Rightarrow 1$
Let $g:X \rightarrow \mathbb{R}$ be a continuous function. We want to show that $g$ is a bounded function. Consider the open family $\mathcal{O}=\left\{\cdots,O_{-3},O_{-2},O_{-1},O_0,O_1,O_2,O_3,\cdots \right\}$ where each $O_n=g^{-1}((n,n+2))$. Note that $\mathcal{O}$ is a locally finite family in $X$ since its members $O_n=g^{-1}((n,n+2))$ are inverse images of members of a locally finite family in the range space $\mathbb{R}$. By condition $4$, $\mathcal{O}$ has a finite subcover, leading to the conclusion that $g$ is a bounded function. $\blacksquare$

Theorem 2
Let $X$ be a space. The following conditions are equivalent:

1. The space $X$ is pseudocompact.
2. If $\mathcal{O}=\left\{O_1,O_2,O_3,\cdots \right\}$ is a family of non-empty open subsets of $X$ such that $O_n \supset O_{n+1}$ for each $n$, then $\bigcap \limits_{n=1}^\infty \overline{O_n} \ne \varnothing$.
3. If $\mathcal{V}=\left\{V_1,V_2,V_3,\cdots \right\}$ is a family of non-empty open subsets of $X$ such that $\mathcal{V}$ has the finite intersection property, then $\bigcap \limits_{n=1}^\infty \overline{V_n} \ne \varnothing$.

Proof
$1 \Rightarrow 2$
Suppose that $X$ is pseudocompact. Suppose $\mathcal{O}=\left\{O_1,O_2,O_3,\cdots \right\}$ satisfies the hypothesis of condition $2$. If there is some positive integer $m$ such that $O_n=O_m$ for all $n \ge m$, then we are done. So assume that $O_n$ are distinct for infinitely many $n$. According to condition $2$ in Theorem 1, $\mathcal{O}$ must not be a locally finite family. Then there exists a point $x \in X$ such that every open set containing $x$ must meet infinitely many $O_n$. This implies that $x \in \overline{O_n}$ for infinitely many $n$. Thus $x \in \bigcap \limits_{n=1}^\infty \overline{O_n}$.

$2 \Rightarrow 3$
Suppose $\mathcal{V}=\left\{V_1,V_2,V_3,\cdots \right\}$ is a family of non-empty open sets with the finite intersection property as in the hypothesis of $3$. Then let $O_1=V_1$, $O_2=V_1 \cap V_2$, $O_3=V_1 \cap V_2 \cap V_3$, and so on. By condition $2$, we have $\bigcap \limits_{n=1}^\infty \overline{O_n} \ne \varnothing$, which implies $\bigcap \limits_{n=1}^\infty \overline{V_n} \ne \varnothing$.

$3 \Rightarrow 1$
Let $g:X \rightarrow \mathbb{R}$ be a continuous function such that $g$ is unbounded. For each positive integer $n$, let $V_n=\left\{x \in X: \lvert g(x) \lvert > n \right\}$. Clearly the open sets $V_n$ have the finite intersection property. Because $g$ is unbounded, it follows that $\bigcap \limits_{n=1}^\infty \overline{V_n} = \varnothing$. $\blacksquare$

Let $X$ be a space. Let $A \subset X$. The interior of $A$, denoted by $\text{int}(A)$, is the set of all points $x \in X$ such that there exists an open set $O$ with $x \in O \subset A$. Points of $\text{int}(A)$ are called the interior points of $A$. A subset $C \subset X$ is said to be a closed domain if $C=\overline{\text{int}(C)}$. It is clear that $C$ is a closed domain if and only if $C$ is the closure of an open set.

Theorem 3
The property of being a pseudocompact space is hereditary with respect to subsets that are closed domains.

Proof
Let $X$ be a pseudocompact space. We show that $\overline{U}$ is pseudocompact for any nonempty open set $U \subset X$. Let $Y=\overline{U}$ where $U$ is a non-empty open subset of $X$. Let $S_1 \supset S_2 \supset S_3 \supset \cdots$ be a decreasing sequence of open subsets of $Y$. Note that each $S_i$ contains points of the open set $U$. Let $O_i=S_i \cap U$ for each $i$. Note that the open sets $O_i$ form a decreasing sequence of open sets in the pseudocompact space $X$. By Theorem 2, we have $\bigcap \limits_{n=1}^\infty \overline{O_n} \ne \varnothing$ (closure here is with respect to $X$). Note that points in $\bigcap \limits_{n=1}^\infty \overline{O_n}$ are also points in $\bigcap \limits_{n=1}^\infty \overline{S_n}$ (closure with respect to $Y$). By Theorem 2, $Y=\overline{U}$ is pseudocompact. $\blacksquare$

Theorem 4 (Statement $E$ above)
Let $X$ be a pseudocompact submetrizable space. Then $X$ is metrizable.

Proof
Let $(X,\tau)$ be a pseudocompact submetrizable space. Then there exists topology $\tau^*$ on $X$ such $(X,\tau^*)$ is metrizable and $\tau^* \subset \tau$. We show that $\tau \subset \tau^*$, leading to the conclusion that $(X,\tau)$ is also metrizable. If $A \subset X$, we denote the closure of $A$ in $(X,\tau)$ by $cl_{\tau}(A)$ and the closure of $A$ in $(X,\tau^*)$ by $cl_{\tau^*}(A)$.

To show that $\tau \subset \tau^*$, we show any closed set with respect to the topology $\tau$ is also a closed set with respect to the topology $\tau^*$. Let $C$ be a closed set in $(X,\tau)$. Consider the family $\mathcal{W}=\left\{cl_{\tau}(U): U \in \tau \text{ and } C \subset U \right\}$. We make the following claims.

Claim 1. $C=\bigcap \left\{W: W \in \mathcal{W} \right\}$.

Claim 2. Each $W \in \mathcal{W}$ is pseudocompact in $(X,\tau)$.

Claim 3. Each $W \in \mathcal{W}$ is pseudocompact in $(X,\tau^*)$.

Claim 4. Each $W \in \mathcal{W}$ is compact in $(X,\tau^*)$.

We now discuss each of these four claims. For Claim 1, it is clear that $C \subset \bigcap \left\{W: W \in \mathcal{W} \right\}$. The reverse set inclusion follows from the fact that $X$ is a regular space. Claim 2 follows from Theorem 3. Note that sets in $\mathcal{W}$ are closed domains in the pseudocompact space $(X,\tau)$.

If sets in $\mathcal{W}$ are pseudocompact in the larger topology $\tau$, they would be pseudocompact in the weaker topology $\tau^*$ too. Thus Claim 3 is established. In a metrizable space, compactness and weaker notions such as countably compactness and pseudocompactness coincide. Because they are pseudocompact subsets, sets in $\mathcal{W}$ are compact in the metrizable space $(X,\tau^*)$. Thus Claim 4 is established.

It follows that $C$ is closed in $(X,\tau^*)$ since it is the intersection of compact sets in $(X,\tau^*)$. Thus $(X,\tau)$ is identical to $(X,\tau^*)$, implying that $(X,\tau)$ is metrizable. $\blacksquare$

Reference

1. Engelking, R., General Topology, Revised and Completed edition, 1989, Heldermann Verlag, Berlin.
2. Willard, S., General Topology, 1970, Addison-Wesley Publishing Company.
|

# A Note About Countably Compact Spaces

This is a discussion on several additional conditions that would turn a countably compact space into a compact space. For example, a countably compact space having a $G_\delta-$ diagonal is compact (proved in this post). Each of the following properties, if possessed by a countably compact space, would lead to compactness: (1) having a $G_\delta-$ diagonal, (2) being metrizable, (3) being a Moore space, (4) being paracompact, and (5) being metacompact. All spaces are at least Hausdorff. We have the following theorem. Some relevant definitions and links to posts in this blog are given below. For any terms that are not defined here, see Engelking ([1]).

Theorem. Let $X$ be a countably compact space. If $X$ possesses any one of the following conditions, then $X$ is compact.

1. Having a $G_\delta-$ diagonal.
2. Being a metrizable space.
3. Being a Moore space.
4. Being a paracompact space.
5. Being a metacompact space.

The proof of 1 has already been presented in another post in this blog. Since metrizable spaces are Moore spaces, between 2 and 3 we only need to prove 3. Between 4 and 5, we only need to prove 5 (since paracompact compact spaces are metacompact).

Proof of 3. A Moore space is a regular space that has a development (see this post for the definition). In this post, I showed that a space $X$ has a $G_\delta-$diagonal if and only it has a $G_\delta-$diagonal sequence. It is easy to verify that the development for a Moore space is a $G_\delta-$diagonal sequence. Thus any Moore space has a $G_\delta-$diagonal and any countably compact Moore space is compact (and metrizable). Saying in another way, in the class of Moore spaces, countably compactness is equivalent to compactness.

Proof of 5. A space $X$ is metacompact if every open cover of $X$ has a point-finite open refinement. Let $X$ be metacompact. Let $\mathcal{U}$ be an open cover of $X$. By the metacompactness, $\mathcal{U}$ has a point-finite open refinement $\mathcal{O}$. We are done if we can show $\mathcal{O}$ has a finite subcover. This finite subcover is obtained through the following claims.

Claim 1. There is a set $M \subset X$ such that $\lvert M \cap O \lvert \thinspace \leq 1$ for each $O \in \mathcal{O}$ and such that $M$ is maximal. That is, by adding an additional point $x \notin M$, $\lvert (M \cup \lbrace{x}\rbrace) \cap O \lvert \thinspace \ge 2$ for some $O \in \mathcal{O}$.

Such a set can be obtained by using the Zorn’s Lemma.

Claim 2. Let $\mathcal{W}=\lbrace{O \in \mathcal{O}:O \cap M \neq \phi}\rbrace$. We claim that $\mathcal{W}$ is an open cover of $X$.

To see this, let $x \in X$. If $x \in M$, then $x \in O$ for some $O \in \mathcal{W}$. If $x \notin M$, then by the maximality of $M$, $M \cup \lbrace{x}\rbrace$ intersects with some $O \in \mathcal{O}$ with at least 2 points. This means that $x$ and at least one point of $M$ are in $O$. Then $O \in \mathcal{W}$.

Since each open set in $\mathcal{W}$ contains at most one point of $M$, $M$ is a closed and discrete set in $X$. By the countably compactness of $X$, $M$ must be finite. Since each point of $M$ is in at most finitely many open sets in $\mathcal{O}$, $\mathcal{W}$ is finite. Thus $\mathcal{W}$ is a finite subcover of $\mathcal{O}$.

Reference

1. Engelking, R., General Topology, Revised and Completed Edition, 1989, Heldermann Verlag, Berlin.