Comparing two function spaces

Let \omega_1 be the first uncountable ordinal, and let \omega_1+1 be the successor ordinal to \omega_1. Furthermore consider these ordinals as topological spaces endowed with the order topology. It is a well known fact that any continuous real-valued function f defined on either \omega_1 or \omega_1+1 is eventually constant, i.e., there exists some \alpha<\omega_1 such that the function f is constant on the ordinals beyond \alpha. Now consider the function spaces C_p(\omega_1) and C_p(\omega_1+1). Thus individually, elements of these two function spaces appear identical. Any f \in C_p(\omega_1) matches a function f^* \in C_p(\omega_1+1) where f^* is the result of adding the point (\omega_1,a) to f where a is the eventual constant real value of f. This fact may give the impression that the function spaces C_p(\omega_1) and C_p(\omega_1+1) are identical topologically. The goal in this post is to demonstrate that this is not the case. We compare the two function spaces with respect to some convergence properties (countably tightness and Frechet-Urysohn property) as well as normality.

____________________________________________________________________

Tightness

One topological property that is different between C_p(\omega_1) and C_p(\omega_1+1) is that of tightness. The function space C_p(\omega_1+1) is countably tight, while C_p(\omega_1) is not countably tight.

Let X be a space. The tightness of X, denoted by t(X), is the least infinite cardinal \kappa such that for any A \subset X and for any x \in X with x \in \overline{A}, there exists B \subset A for which \lvert B \lvert \le \kappa and x \in \overline{B}. When t(X)=\omega, we say that X has countable tightness or is countably tight. When t(X)>\omega, we say that X has uncountable tightness or is uncountably tight.

First, we show that the tightness of C_p(\omega_1) is greater than \omega. For each \alpha<\omega_1, define f_\alpha: \omega_1 \rightarrow \left\{0,1 \right\} such that f_\alpha(\beta)=0 for all \beta \le \alpha and f_\alpha(\beta)=1 for all \beta>\alpha. Let g \in C_p(\omega_1) be the function that is identically zero. Then g \in \overline{F} where F is defined by F=\left\{f_\alpha: \alpha<\omega_1 \right\}. It is clear that for any countable B \subset F, g \notin \overline{B}. Thus C_p(\omega_1) cannot be countably tight.

The space \omega_1+1 is a compact space. The fact that C_p(\omega_1+1) is countably tight follows from the following theorem.

Theorem 1
Let X be a completely regular space. Then the function space C_p(X) is countably tight if and only if X^n is Lindelof for each n=1,2,3,\cdots.

Theorem 1 is a special case of Theorem I.4.1 on page 33 of [1] (the countable case). One direction of Theorem 1 is proved in this previous post, the direction that will give us the desired result for C_p(\omega_1+1).

____________________________________________________________________

The Frechet-Urysohn property

In fact, C_p(\omega_1+1) has a property that is stronger than countable tightness. The function space C_p(\omega_1+1) is a Frechet-Urysohn space (see this previous post). Of course, C_p(\omega_1) not being countably tight means that it is not a Frechet-Urysohn space.

____________________________________________________________________

Normality

The function space C_p(\omega_1+1) is not normal. If C_p(\omega_1+1) is normal, then C_p(\omega_1+1) would have countable extent. However, there exists an uncountable closed and discrete subset of C_p(\omega_1+1) (see this previous post). On the other hand, C_p(\omega_1) is Lindelof. The fact that C_p(\omega_1) is Lindelof is highly non-trivial and follows from [2]. The author in [2] showed that if X is a space consisting of ordinals such that X is first countable and countably compact, then C_p(X) is Lindelof.

____________________________________________________________________

Embedding one function space into the other

The two function space C_p(\omega_1+1) and C_p(\omega_1) are very different topologically. However, one of them can be embedded into the other one. The space \omega_1+1 is the continuous image of \omega_1. Let g: \omega_1 \longrightarrow \omega_1+1 be a continuous surjection. Define a map \psi: C_p(\omega_1+1) \longrightarrow C_p(\omega_1) by letting \psi(f)=f \circ g. It is shown in this previous post that \psi is a homeomorphism. Thus C_p(\omega_1+1) is homeomorphic to the image \psi(C_p(\omega_1+1)) in C_p(\omega_1). The map g is also defined in this previous post.

The homeomposhism \psi tells us that the function space C_p(\omega_1), though Lindelof, is not hereditarily normal.

On the other hand, the function space C_p(\omega_1) cannot be embedded in C_p(\omega_1+1). Note that C_p(\omega_1+1) is countably tight, which is a hereditary property.

____________________________________________________________________

Remark

There is a mapping that is alluded to at the beginning of the post. Each f \in C_p(\omega_1) is associated with f^* \in C_p(\omega_1+1) which is obtained by appending the point (\omega_1,a) to f where a is the eventual constant real value of f. It may be tempting to think of the mapping f \rightarrow f^* as a candidate for a homeomorphism between the two function spaces. The discussion in this post shows that this particular map is not a homeomorphism. In fact, no other one-to-one map from one of these function spaces onto the other function space can be a homeomorphism.

____________________________________________________________________

Reference

  1. Arkhangelskii, A. V., Topological Function Spaces, Mathematics and Its Applications Series, Kluwer Academic Publishers, Dordrecht, 1992.
  2. Buzyakova, R. Z., In search of Lindelof C_p‘s, Comment. Math. Univ. Carolinae, 45 (1), 145-151, 2004.

____________________________________________________________________
\copyright \ 2014 \text{ by Dan Ma}

Cp(omega 1 + 1) is not normal

In this and subsequent posts, we consider C_p(X) where X is a compact space. Recall that C_p(X) is the space of all continuous real-valued functions defined on X and that it is endowed with the pointwise convergence topology. One of the compact spaces we consider is \omega_1+1, the first compact uncountable ordinal. There are many interesting results about the function space C_p(\omega_1+1). In this post we show that C_p(\omega_1+1) is not normal. An even more interesting fact about C_p(\omega_1+1) is that C_p(\omega_1+1) does not have any dense normal subspace [1].

Let \omega_1 be the first uncountable ordinal, and let \omega_1+1 be the successor ordinal to \omega_1. The set \omega_1 is the first uncountable ordinal. Furthermore consider these ordinals as topological spaces endowed with the order topology. As mentioned above, the space \omega_1+1 is the first compact uncountable ordinal. In proving that C_p(\omega_1+1) is not normal, a theorem that is due to D. P. Baturov is utilized [2]. This theorem is also proved in this previous post.

For the basic working of function spaces with the pointwise convergence topology, see the post called Working with the function space Cp(X).

The fact that C_p(\omega_1+1) is not normal is established by the following two points.

  • If C_p(\omega_1+1) is normal, then C_p(\omega_1+1) has countable extent, i.e. every closed and discrete subspace of C_p(\omega_1+1) is countable.
  • There exists an uncountable closed and discrete subspace of C_p(\omega_1 +1).

We discuss each of the bullet points separately.

____________________________________________________________________

The function space C_p(\omega_1+1) is a dense subspace of \mathbb{R}^{\omega_1}, the product of \omega_1 many copies of \mathbb{R}. According to a result of D. P. Baturov [2], any dense normal subspace of the product of \omega_1 many separable metric spaces has countable extent (also see Theorem 1a in this previous post). Thus C_p(\omega_1+1) cannot be normal if the second bullet point above is established.

____________________________________________________________________

Now we show that there exists an uncountable closed and discrete subspace of C_p(\omega_1 +1). For each \alpha with 0<\alpha<\omega_1, define h_\alpha:\omega_1 + 1 \rightarrow \left\{0,1 \right\} by:

    h_\alpha(\gamma) = \begin{cases} 1 & \mbox{if } \gamma \le \alpha \\ 0 & \mbox{if } \alpha<\gamma \le \omega_1  \end{cases}

Clearly, h_\alpha \in C_p(\omega_1 +1) for each \alpha. Let H=\left\{h_\alpha: 0<\alpha<\omega_1 \right\}. We show that H is a closed and discrete subspace of C_p(\omega_1 +1). The fact that H is closed in C_p(\omega_1 +1) is establish by the following claim.

Claim 1
Let h \in C_p(\omega_1 +1) \backslash H. There exists an open subset U of C_p(\omega_1 +1) such that h \in U and U \cap H=\varnothing.

First we get some easy cases out of the way. Suppose that there exists some \alpha<\omega_1 such that h(\alpha) \notin \left\{0,1 \right\}. Then let U=\left\{f \in C_p(\omega_1 +1): f(\alpha) \in \mathbb{R} \backslash \left\{0,1 \right\} \right\}. Clearly h \in U and U \cap H=\varnothing.

Another easy case: If h(\alpha)=0 for all \alpha \le \omega_1, then consider the open set U where U=\left\{f \in C_p(\omega_1 +1): f(0) \in \mathbb{R} \backslash \left\{1 \right\} \right\}. Clearly h \in U and U \cap H=\varnothing.

From now on we can assume that h(\omega_1+1) \subset \left\{0,1 \right\} and that h is not identically the zero function. Suppose Claim 1 is not true. Then h \in \overline{H}. Next observe the following:

    Observation.
    If h(\beta)=1 for some \beta \le \omega_1, then h(\alpha)=1 for all \alpha \le \beta.

To see this, if h(\alpha)=0, h(\beta)=1 and \alpha<\beta, then define the open set V by V=\left\{f \in C_p(\omega_1 +1): f(\alpha) \in (-0.1,0.1) \text{ and } f(\beta) \in (0.9,1.1) \right\}. Note that h \in V and V \cap H=\varnothing, contradicting that h \in \overline{H}. So the above observation is valid.

Now either h(\omega_1)=1 or h(\omega_1)=0. We claim that h(\omega_1)=1 is not possible. Suppose that h(\omega_1)=1. Let V=\left\{f \in C_p(\omega_1 +1): f(\omega_1) \in (0.9,1.1) \right\}. Then h \in V and V \cap H=\varnothing, contradicting that h \in \overline{H}. It must be the case that h(\omega_1)=0.

Because of the continuity of h at the point x=\omega_1, of all the \gamma<\omega_1 for which h(\gamma)=1, there is the largest one, say \beta. Now h(\beta)=1. According to the observation made above, h(\alpha)=1 for all \alpha \le \beta. This means that h=h_\beta. This is a contradiction since h \notin H. Thus Claim 1 must be true and the fact that H is closed is established.

Next we show that H is discrete in C_p(\omega_1 +1). Fix h_\alpha where 0<\alpha<\omega_1. Let W=\left\{f \in C_p(\omega_1 +1): f(\alpha) \in (0.9,1.1) \text{ and } f(\alpha+1) \in (-0.1,0.1) \right\}. It is clear that h_\alpha \in W. Furthermore, h_\gamma \notin W for all \alpha < \gamma and h_\gamma \notin W for all \gamma <\alpha. Thus W is open such that \left\{h_\alpha \right\}=W \cap H. This completes the proof that H is discrete.

We have established that H is an uncountable closed and discrete subspace of C_p(\omega_1 +1). This implies that C_p(\omega_1 +1) is not normal.

____________________________________________________________________

Remarks

The set H=\left\{h_\alpha: 0<\alpha<\omega_1 \right\} as defined above is closed and discrete in C_p(\omega_1 +1). However, the set H is not discrete in a larger subspace of the product space. The set H is also a subset of the following \Sigma-product:

    \Sigma(\omega_1)=\left\{x \in \mathbb{R}^{\omega_1}: x_\alpha \ne 0 \text{ for at most countably many } \alpha < \omega_1 \right\}

Because \Sigma(\omega_1) is the \Sigma-product of separable metric spaces, it is normal (see here). By Theorem 1a in this previous post, \Sigma(\omega_1) would have countable extent. Thus the set H cannot be closed and discrete in \Sigma(\omega_1). We can actually see this directly. Let \alpha<\omega_1 be a limit ordinal. Define t:\omega_1 + 1 \rightarrow \left\{0,1 \right\} by t(\beta)=1 for all \beta<\alpha and t(\beta)=0 for all \beta \ge \alpha. Clearly t \notin C_p(\omega_1 +1) and t \in \Sigma(\omega_1). Furthermore, t \in \overline{H} (the closure is taken in \Sigma(\omega_1)).

____________________________________________________________________

Reference

  1. Arhangel’skii, A. V., Normality and Dense Subspaces, Proc. Amer. Math. Soc., 48, no. 2, 283-291, 2001.
  2. Baturov, D. P., Normality in dense subspaces of products, Topology Appl., 36, 111-116, 1990.

____________________________________________________________________
\copyright \ 2014 \text{ by Dan Ma}

A useful lemma for proving normality

In this post we discuss a lemma (Lemma 1 below) that is useful for proving normality. In some cases, it is more natural using this lemma to prove that a space is normal than using the definition of normality. The proof of Lemma 1 is not difficult. Yet it simplifies some proofs of normality. One reason is that the derivation of two disjoint open sets that are to separate two disjoint closed sets is done in the lemma, thus simplifying the main proof at hand. The lemma is well known and is widely used in the literature. See Lemma 1.5.15 in [1]. Two advanced examples of applications are [2] and [3]. After proving the lemma, we give three elementary applications of the lemma.

In this post, we only consider spaces that are regular and T_1. A space X is regular if for each open set U \subset X and for each x \in U, there exists an open V \subset X with x \in V \subset \overline{V} \subset U. A space is T_1 if every set with only one point is a closed set.

Lemma 1
A space Y is a normal space if the following condition (Condition 1) is satisfied:

  1. For each closed subset L of Y, and for each open subset M of Y with L \subset M, there exists a sequence M_1,M_2,M_3,\cdots of open subsets of Y such that L \subset \bigcup_{i=1}^\infty M_i and \overline{M_i} \subset M for each i.

Proof of Lemma 1
Suppose the space Y satisfies condition 1. Let H and K be disjoint closed subsets of the space Y. Consider H \subset U=Y \backslash K. Using condition 1, there exists a sequence U_1,U_2,U_3,\cdots of open subsets of the space Y such that H \subset \bigcup_{i=1}^\infty U_i and \overline{U_i} \cap K=\varnothing for each i. Consider K \subset V=Y \backslash H. Similarly, there exists a sequence V_1,V_2,V_3,\cdots of open subsets of the space Y such that K \subset \bigcup_{i=1}^\infty V_i and \overline{V_i} \cap H=\varnothing for each i.

For each positive integer n, define the open sets U_n^* and V_n^* as follows:

    U_n^*=U_n \backslash \bigcup_{k=1}^n \overline{V_k}

    V_n^*=V_n \backslash \bigcup_{k=1}^n \overline{U_k}

Let P=\bigcup_{n=1}^\infty U_n^* and Q=\bigcup_{n=1}^\infty V_n^*. It is clear P and Q are open and that H \subset P and K \subset Q. We claim that P and Q are disjoint. Suppose y \in P \cap Q. Then y \in U_n^* for some n and y \in V_m^* for some m. Assume that n \le m. The fact that y \in U_n^* implies y \in U_n. The fact that y \in V_m^* implies that y \notin \overline{U_j} for all j \le m. In particular, y \notin U_n, a contradiction. Thus P \cap Q=\varnothing. This completes the proof that the space Y is normal. \blacksquare

____________________________________________________________________

Spaces with nice bases

One application is that spaces with a certain type of bases satisfy condition 1 and thus are normal. For example, spaces with bases that are countable and spaces with bases that are \sigma-locally finite. Spaces with these bases are metrizable. The proof that these spaces are metrizable will be made easier if they can be shown to be normal first. The Urysohn functions (the functions described in Urysohn’s lemma) can then be used to embed the space in question into some universal space that is known to be metrizable. Using regularity and Lemma 1, it is straightforward to verify the following three propositions.

Proposition 2
Let X be a regular space with a countable base. Then X is normal.

Proposition 3
Let X be a regular space with a \sigma-locally finite base. Then X is normal.

Proposition 4
Let X be a regular space with a \sigma-discrete base. Then X is normal.

____________________________________________________________________

A characterization of perfectly normal spaces

Another application of Lemma 1 is that it leads naturally to a characterization of perfect normality. Recall that a space X is perfectly normal if X is normal and perfect. A space X is perfect if every closed subset of X is a G_\delta set (i.e. the intersection of countably many open subsets of X). Equivalently a space X is perfect if and only if every open subset of X is an F_\sigma set, i.e., the union of countably many closed subsets of X. We have the following theorem.

Theorem 5
A space Y is perfectly normal if and only if the following condition holds.

  1. For each open subset M of Y, there exists a sequence M_1,M_2,M_3,\cdots of open subsets of Y such that M \subset \bigcup_{i=1}^\infty M_i and \overline{M_i} \subset M for each i.

Clearly, condition 2 is strongly than condition 1.

Proof of Theorem 5
\Longrightarrow
Suppose that the space Y is perfectly normal. Let M be a non-empty open subset of Y. Then M=\bigcup_{n=1}^\infty P_n where each P_n is a closed subset of Y. Using normality of Y, for each n, there exists open subset M_n of Y such that P_n \subset M_n \subset \overline{M_n} \subset M. Then consition 2 is satisfied.

\Longleftarrow
Suppose condition 2 holds, which implies condition 1 of Lemma 1. Then Y is normal. It is clear that condition 2 implies that every open subset of Y is an F_\sigma set. \blacksquare

____________________________________________________________________

Normality is hereditary with respect to F_\sigma subsets

Normality is not a hereditary notion. Lemma 1 can used to show that normality is hereditary with respect to F_\sigma subspaces.

Theorem 6
Let Y be a normal space. Then every F_\sigma subspace of Y is normal.

Proof of Theorem 6
Let H be a subspace of Y such that H=\bigcup_{n=1}^\infty P_n where each P_n is closed subset of Y. Let L be a closed subset of H and let M be an open subset of H such that L \subset M. We need to find M_1,M_2,M_3,\cdots, open in H, such that L \subset \bigcup_{i=1}^\infty M_i and \overline{M_i} \subset M for all i (closure of M_i is within H).

Let U be an open subset of Y such that M=U \cap H. For each positive integer n, let H_n=P_n \cap L. Obviously H_n is closed in H. It is also the case that H_n is closed in Y. To see this, let p \in Y be a limit point of H_n. Then p is a limit point of P_n. Hence p \in P_n since P_n is closed in Y. We now have p \in H. The point p is also a limit point of L. Thus p \in L since L is closed in H. Now we have p \in H_n=P_n \cap L, proving that H_n is closed in Y.

Now we have H_n \subset U for all n. By Lemma 1, for each n, there exists a sequence U_{n,1},U_{n,2},U_{n,3},\cdots of open subsets of Y such that H_n \subset \bigcup_{j=1}^\infty U_{n,j} and \overline{U_{n,j}} \subset U for all j. Note that L=\bigcup_{n=1}^\infty H_n. Rename M_{n,j}=U_{n,j} \cap H over all n,j by the sequence M_1,M_2,M_3,\cdots. Then L \subset \bigcup_{i=1}^\infty M_i. It also follows that \overline{M_i} \subset M for all i (closure of M_i is within H). This completes the proof that the F_\sigma set H is normal. \blacksquare

____________________________________________________________________

Reference

  1. Engelking, R., General Topology, Revised and Completed edition, Heldermann Verlag, Berlin, 1989.
  2. Gruenhage, G., Normality in X^2 for complete X, Trans. Amer. Math. Soc., 340 (2), 563-586, 1993.
  3. Nyikos, P., A compact nonmetrizable space P such that P^2 is completely normal, Topology Proc., 2, 359-363, 1977.

____________________________________________________________________
\copyright \ 2014 \text{ by Dan Ma}

Normal x compact needs not be subnormal

In this post, we revisit a counterexample that was discussed previously in this blog. A previous post called “Normal x compact needs not be normal” shows that the Tychonoff product of two normal spaces needs not be normal even when one of the factors is compact. The example is \omega_1 \times (\omega_1+1). In this post, we show that \omega_1 \times (\omega_1+1) fails even to be subnormal. Both \omega_1 and \omega_1+1 are spaces of ordinals. Thus they are completely normal (equivalent to hereditarily normal). The second factor is also a compact space. Yet their product is not only not normal; it is not even subnormal.

A subset M of a space Y is a G_\delta subset of Y (or a G_\delta-set in Y) if M is the intersection of countably many open subsets of Y. A subset M of a space Y is a F_\sigma subset of Y (or a F_\sigma-set in Y) if Y-M is a G_\delta-set in Y (equivalently if M is the union of countably many closed subsets of Y).

A space Y is normal if for any disjoint closed subsets H and K of Y, there exist disjoint open subsets U_H and U_K of Y such that H \subset U_H and K \subset U_K. A space Y is subnormal if for any disjoint closed subsets H and K of Y, there exist disjoint G_\delta subsets V_H and V_K of Y such that H \subset V_H and K \subset V_K. Clearly any normal space is subnormal.

A space Y is pseudonormal if for any disjoint closed subsets H and K of Y (one of which is countable), there exist disjoint open subsets U_H and U_K of Y such that H \subset U_H and K \subset U_K. The space \omega_1 \times (\omega_1+1) is pseudonormal (see this previous post). The Sorgenfrey plane is an example of a subnormal space that is not pseudonormal (see here). Thus the two weak forms of normality (pseudonormal and subnormal) are not equivalent.

The same two disjoint closed sets that prove the non-normality of \omega_1 \times (\omega_1+1) are also used for proving non-subnormality. The two closed sets are:

    H=\left\{(\alpha,\alpha): \alpha<\omega_1 \right\}

    K=\left\{(\alpha,\omega_1): \alpha<\omega_1 \right\}

The key tool, as in the proof for non-normality, is the Pressing Down Lemma ([1]). The lemma has been used in a few places in this blog, especially for proving facts about \omega_1 (e.g. this previous post on the first uncountable ordinal). Lemma 1 below is a lemma that is derived from the Pressing Down Lemma.

Pressing Down Lemma
Let S be a stationary subset of \omega_1. Let f:S \rightarrow \omega_1 be a pressing down function, i.e., f satisfies: \forall \ \alpha \in S, f(\alpha)<\alpha. Then there exists \alpha<\omega_1 such that f^{-1}(\alpha) is a stationary set.

Lemma 1
Let L=\left\{(\alpha,\alpha) \in \omega_1 \times \omega_1: \alpha \text{ is a limit ordinal} \right\}. Suppose that L \subset \bigcap_{n=1}^\infty O_n where each O_n is an open subset of \omega_1 \times \omega_1. Then [\gamma,\omega_1) \times [\gamma,\omega_1) \subset \bigcap_{n=1}^\infty O_n for some \gamma<\omega_1.

Proof of Lemma 1
For each n and for each \alpha<\omega_1 where \alpha is a limit, choose g_n(\alpha)<\alpha such that [g_n(\alpha),\alpha] \times [g_n(\alpha),\alpha] \subset O_n. The function g_n can be chosen since O_n is open in the product \omega_1 \times \omega_1. By the Pressing Down Lemma, for each n, there exists \gamma_n < \omega_1 and there exists a stationary set S_n \subset \omega_1 such that g_n(\alpha)=\gamma_n for all \alpha \in S_n. It follows that [\gamma_n,\omega_1) \times [\gamma_n,\omega_1) \subset O_n for each n. Choose \gamma<\omega_1 such that \gamma_n<\gamma for all n. Then [\gamma,\omega_1) \times [\gamma,\omega_1) \subset O_n for each n. \blacksquare

Theorem 2
The product space \omega_1 \times (\omega_1+1) is not subnormal.

Proof of Theorem 2
Let H and K be defined as above. Suppose H \subset \bigcap_{n=1}^\infty U_n and K \subset \bigcap_{n=1}^\infty V_n where each U_n and each V_n are open in \omega_1 \times (\omega_1+1). Without loss of generality, we can assume that U_n \cap (\omega_1 \times \left\{\omega_1 \right\})=\varnothing, i.e., U_n is open in \omega_1 \times \omega_1 for each n. By Lemma 1, [\gamma,\omega_1) \times [\gamma,\omega_1) \subset \bigcap_{n=1}^\infty U_n for some \gamma<\omega_1.

Choose \beta>\gamma such that \beta is a successor ordinal. Note that (\beta,\omega_1) \in \bigcap_{n=1}^\infty V_n. For each n, there exists some \delta_n<\omega_1 such that \left\{\beta \right\} \times [\delta_n,\omega_1] \subset V_n. Choose \delta<\omega_1 such that \delta >\delta_n for all n and that \delta >\gamma. Note that \left\{\beta \right\} \times [\delta,\omega_1) \subset \bigcap_{n=1}^\infty V_n. It follows that \left\{\beta \right\} \times [\delta,\omega_1) \subset [\gamma,\omega_1) \times [\gamma,\omega_1) \subset \bigcap_{n=1}^\infty U_n. Thus there are no disjoint G_\delta sets separating H and K. \blacksquare

____________________________________________________________________

Reference

  1. Kunen, K., Set Theory, An Introduction to Independence Proofs, First Edition, North-Holland, New York, 1980.

____________________________________________________________________

\copyright \ 2014 \text{ by Dan Ma}

An example of a normal but not Lindelof Cp(X)

In this post, we discuss an example of a function space C_p(X) that is normal and not Lindelof (as indicated in the title). Interestingly, much more can be said about this function space. In this post, we show that there exists a space X such that

  • C_p(X) is collectionwise normal and not paracompact,
  • C_p(X) is not Lindelof but contains a dense Lindelof subspace,
  • C_p(X) is not first countable but is a Frechet space,
  • As a corollary of the previous point, C_p(X) cannot contain a copy of the compact space \omega_1+1,
  • C_p(X) is homeomorphic to C_p(X)^\omega,
  • C_p(X) is not hereditarily normal,
  • C_p(X) is not metacompact.

A short and quick description of the space X is that X is the one-point Lindelofication of an uncountable discrete space. As shown below, the function space C_p(X) is intimately related to a \Sigma-product of copies of real lines. The results listed above are merely an introduction to this wonderful example and are derived by examining the \Sigma-products of copies of real lines. Deep results about \Sigma-product of real lines abound in the literature. The references listed at the end are a small sample. Example 3.2 in [2] is another interesting illustration of this example.

We now define the domain space X=L_\tau. In the discussion that follows, the Greek letter \tau is always an uncountable cardinal number. Let D_\tau be a set with cardinality \tau. Let p be a point not in D_\tau. Let L_\tau=D_\tau \cup \left\{p \right\}. Consider the following topology on L_\tau:

  • Each point in D_\tau an isolated point, and
  • open neighborhoods at the point p are of the form L_\tau-K where K \subset D_\tau is countable.

It is clear that L_\tau is a Lindelof space. The Lindelof space L_\tau is sometimes called the one-point Lindelofication of the discrete space D_\tau since it is a Lindelof space that is obtained by adding one point to a discrete space.

Consider the function space C_p(L_\tau). See this post for general information on the pointwise convergence topology of C_p(Y) for any completely regular space Y.

All the facts about C_p(X)=C_p(L_\tau) mentioned at the beginning follow from the fact that C_p(L_\tau) is homeomorphic to the \Sigma-product of \tau many copies of the real lines. Specifically, C_p(L_\tau) is homeomorphic to the following subspace of the product space \mathbb{R}^\tau.

    \Sigma_{\alpha<\tau}\mathbb{R}=\left\{ x \in \mathbb{R}^\tau: x_\alpha \ne 0 \text{ for at most countably many } \alpha<\tau \right\}

Thus understanding the function space C_p(L_\tau) is a matter of understanding a \Sigma-product of copies of the real lines. First, we establish the homeomorphism and then discuss the properties of C_p(L_\tau) indicated above.

____________________________________________________________________

The Homeomorphism

For each f \in C_p(L_\tau), it is easily seen that there is a countable set C \subset D_\tau such that f(p)=f(y) for all y \in D_\tau-C. Let W_0=\left\{f \in C_p(L_\tau): f(p)=0 \right\}. Then each f \in W_0 has non-zero values only on a countable subset of D_\tau. Naturally, W_0 and \Sigma_{\alpha<\tau}\mathbb{R} are homeomorphic.

We claim that C_p(L_\tau) is homeomorphic to W_0 \times \mathbb{R}. For each f \in C_p(L_\tau), define h(f)=(f-f(p),f(p)). Here, f-f(p) is the function g \in C_p(L_\tau) such that g(x)=f(x)-f(p) for all x \in L_\tau. Clearly h(f) is well-defined and h(f) \in W_0 \times \mathbb{R}. It can be readily verified that h is a one-to-one map from C_p(L_\tau) onto W_0 \times \mathbb{R}. It is not difficult to verify that both h and h^{-1} are continuous.

We use the notation X_1 \cong X_2 to mean that the spaces X_1 and X_2 are homeomorphic. Then we have:

    C_p(L_\tau) \ \cong \ W_0 \times \mathbb{R} \ \cong \ (\Sigma_{\alpha<\tau}\mathbb{R})  \times \mathbb{R} \ \cong \ \Sigma_{\alpha<\tau}\mathbb{R}

Thus C_p(L_\tau) \ \cong \ \Sigma_{\alpha<\tau}\mathbb{R}. This completes the proof that C_p(L_\tau) is topologically the \Sigma-product of \tau many copies of the real lines.

____________________________________________________________________

Looking at the \Sigma-Product

Understanding the function space C_p(L_\tau) is now reduced to the problem of understanding a \Sigma-product of copies of the real lines. Most of the facts about \Sigma-products that we need have already been proved in previous blog posts.

In this previous post, it is established that the \Sigma-product of separable metric spaces is collectionwise normal. Thus C_p(L_\tau) is collectionwise normal. The \Sigma-product of spaces, each of which has at least two points, always contains a closed copy of \omega_1 with the ordered topology (see the lemma in this previous post). Thus C_p(L_\tau) contains a closed copy of \omega_1 and hence can never be paracompact (and thus not Lindelof).

___________________________________

Consider the following subspace of the \Sigma-product \Sigma_{\alpha<\tau}\mathbb{R}:

    \sigma_\tau=\left\{ x \in \Sigma_{\alpha<\tau}\mathbb{R}: x_\alpha \ne 0 \text{ for at most finitely many } \alpha<\tau \right\}

In this previous post, it is shown that \sigma_\tau is a Lindelof space. Though C_p(L_\tau) \cong \Sigma_{\alpha<\tau}\mathbb{R} is not Lindelof, it has a dense Lindelof subspace, namely \sigma_\tau.

___________________________________

A space Y is first countable if there exists a countable local base at each point y \in Y. A space Y is a Frechet space (or is Frechet-Urysohn) if for each y \in Y, if y \in \overline{A} where A \subset Y, then there exists a sequence \left\{y_n: n=1,2,3,\cdots \right\} of points of A such that the sequence converges to y. Clearly, any first countable space is a Frechet space. The converse is not true (see Example 1 in this previous post).

For any uncountable cardinal number \tau, the product \mathbb{R}^\tau is not first countable. In fact, any dense subspace of \mathbb{R}^\tau is not first countable. In particular, the \Sigma-product \Sigma_{\alpha<\tau}\mathbb{R} is not first countable. In this previous post, it is shown that the \Sigma-product of first countable spaces is a Frechet space. Thus C_p(L_\tau) \cong \Sigma_{\alpha<\tau}\mathbb{R} is a Frechet space.

___________________________________

As a corollary of the previous point, C_p(L_\tau) \cong \Sigma_{\alpha<\tau}\mathbb{R} cannot contain a homeomorphic copy of any space that is not Frechet. In particular, it cannot contain a copy of any compact space that is not Frechet. For example, the compact space \omega_1+1 is not embeddable in C_p(L_\tau). The interest in compact subspaces of C_p(L_\tau) \cong \Sigma_{\alpha<\tau}\mathbb{R} is that any compact space that is topologically embeddable in a \Sigma-product of real lines is said to be Corson compact. Thus any Corson compact space is a Frechet space.

___________________________________

It can be readily verified that

    \Sigma_{\alpha<\tau}\mathbb{R} \ \cong \ \Sigma_{\alpha<\tau}\mathbb{R} \ \times \ \Sigma_{\alpha<\tau}\mathbb{R} \ \times \ \Sigma_{\alpha<\tau}\mathbb{R} \ \times \ \cdots \ \text{(countably many times)}

Thus C_p(L_\tau) \cong C_p(L_\tau)^\omega. In particular, C_p(L_\tau) \cong C_p(L_\tau) \times C_p(L_\tau) due to the following observation:

    C_p(L_\tau) \times C_p(L_\tau) \cong C_p(L_\tau)^\omega \times C_p(L_\tau)^\omega \cong C_p(L_\tau)^\omega \cong C_p(L_\tau)

___________________________________

As a result of the peculiar fact that C_p(L_\tau) \cong C_p(L_\tau) \times C_p(L_\tau), it can be concluded that C_p(L_\tau), though normal, is not hereditarily normal. This follows from an application of Katetov’s theorem. The theorem states that if Y_1 \times Y_2 is hereditarily normal, then either Y_1 is perfectly normal or every countably infinite subset of Y_2 is closed and discrete (see this previous post). The function space C_p(L _\tau) is not perfectly normal since it contains a closed copy of \omega_1. On the other hand, there are plenty of countably infinite subsets of C_p(L _\tau) that are not closed and discrete. As a Frechet space, C_p(L _\tau) has many convergent sequences. Each such sequence without the limit is a countably infinite set that is not closed and discrete. As an example, let \left\{x_1,x_2,x_3,\cdots \right\} be an infinite subset of D_\tau and consider the following:

    C=\left\{f_n: n=1,2,3,\cdots \right\}

where f_n is such that f_n(x_n)=n and f_n(x)=0 for each x \in L_\tau with x \ne x_n. Note that C is not closed and not discrete since the points in C converge to g \in \overline{C} where g is the zero-function. Thus C_p(L_\tau) \cong C_p(L_\tau) \times C_p(L_\tau) is not hereditarily normal.

___________________________________

It is well known that collectionwise normal metacompact space is paracompact (see Theorem 5.3.3 in [4] where metacompact is referred to as weakly paracompact). Since C_p(L_\tau) is collectionwise normal and not paracompact, C_p(L_\tau) can never be metacompact.

____________________________________________________________________

Reference

  1. Arkhangelskii, A. V., Topological Function Spaces, Mathematics and Its Applications Series, Kluwer Academic Publishers, Dordrecht, 1992.
  2. Bella, A., Masami, S., Tight points of Pixley-Roy hyperspaces, Topology Appl., 160, 2061-2068, 2013.
  3. Corson, H. H., Normality in subsets of product spaces, Amer. J. Math., 81, 785-796, 1959.
  4. Engelking, R., General Topology, Revised and Completed edition, Heldermann Verlag, Berlin, 1989.

____________________________________________________________________

\copyright \ 2014 \text{ by Dan Ma}

(Lower case) sigma-products of separable metric spaces are Lindelof

Consider the product space X=\prod_{\alpha \in A} X_\alpha. Fix a point b \in \prod_{\alpha \in A} X_\alpha, called the base point. The \Sigma-product of the spaces \left\{X_\alpha: \alpha \in A \right\} is the following subspace of the product space X:

    \Sigma_{\alpha \in A} X_\alpha=\left\{ x \in X: x_\alpha \ne b_\alpha \text{ for at most countably many } \alpha \in A \right\}

In other words, the space \Sigma_{\alpha \in A} X_\alpha is the subspace of the product space X=\prod_{\alpha \in A} X_\alpha consisting of all points that deviate from the base point on at most countably many coordinates \alpha \in A. We also consider the following subspace of \Sigma_{\alpha \in A} X_\alpha.

    \sigma=\left\{ x \in \Sigma_{\alpha \in A} X_\alpha: x_\alpha \ne b_\alpha \text{ for at most finitely many } \alpha \in A \right\}

For convenience , we call \Sigma_{\alpha \in A} X_\alpha the (upper case) Sigma-product (or \Sigma-product) of the spaces X_\alpha and we call the space \sigma the (lower case) sigma-product (or \sigma-product). Clearly, the space \sigma is a dense subspace of \Sigma_{\alpha \in A} X_\alpha. In a previous post, we show that the upper case Sigma-product of separable metric spaces is collectionwise normal. In this post, we show that the (lower case) sigma-product of separable metric spaces is Lindelof. Thus when each factor X_\alpha is a separable metric space with at least two points, the \Sigma-product, though not Lindelof, has a dense Lindelof subspace. The (upper case) \Sigma-product of separable metric spaces is a handy example of a non-Lindelof space that contains a dense Lindelof subspace.

Naturally, the lower case sigma-product can be further broken down into countably many subspaces. For each integer n=0,1,2,3,\cdots, we define \sigma_n as follows:

    \sigma_n=\left\{ x \in \sigma: x_\alpha \ne b_\alpha \text{ for at most } n \text{ many } \alpha \in A \right\}

Clearly, \sigma=\bigcup_{n=0}^\infty \sigma_n. We prove the following theorem. The fact that \sigma is Lindelof will follow as a corollary. Understanding the following proof for Theorem 1 is a matter of keeping straight the notations involving standard basic open sets in the product space X=\prod_{\alpha \in A} X_\alpha. We say V is a standard basic open subset of the product space X if V is of the form V=\prod_{\alpha \in A} V_\alpha such that each V_\alpha is an open subset of the factor space X_\alpha and V_\alpha=X_\alpha for all but finitely many \alpha \in A. The finite set F of all \alpha \in A such that V_\alpha \ne X_\alpha is called the support of the open set V.

Theorem 1
Let \sigma be the \sigma-product of the separable metrizable spaces \left\{X_\alpha: \alpha \in A \right\}. For each n, let \sigma_n be defined as above. The product space \sigma_n \times Y is Lindelof for each non-negative integer n and for all separable metric space Y.

Proof of Theorem 1
We prove by induction on n. Note that \sigma_0=\left\{b \right\}, the base point. Clearly \sigma_0 \times Y is Lindelof for all separable metric space Y. Suppose the theorem hold for the integer n. We show that \sigma_{n+1} \times Y for all separable metric space Y. To this end, let \mathcal{U} be an open cover of \sigma_{n+1} \times Y where Y is a separable metric space. Without loss of generality, we assume that each element of \mathcal{U} is of the form V \times W where V=\prod_{\alpha \in A} V_\alpha is a standard basic open subset of the product space X=\prod_{\alpha \in A} X_\alpha and W is an open subset of Y.

Let \mathcal{U}_0=\left\{U_1,U_2,U_3,\cdots \right\} be a countable subcollection of \mathcal{U} such that \mathcal{U}_0 covers \left\{b \right\} \times Y. For each j, let U_j=V_j \times W_j where V_j=\prod_{\alpha \in A} V_{j,\alpha} is a standard basic open subset of the product space X with b \in V_j and W_j is an open subset of Y. For each j, let F_j be the support of V_j. Note that \alpha \in F_j if and only if V_{j,\alpha} \ne X_\alpha. Also for each \alpha \in F_j, b_\alpha \in V_{j,\alpha}. Furthermore, for each \alpha \in F_j, let V^c_{j,\alpha}=X_\alpha- V_{j,\alpha}. With all these notations in mind, we define the following open set for each \beta \in F_j:

    H_{j,\beta}= \biggl( V^c_{j,\beta} \times \prod_{\alpha \in A, \alpha \ne \beta} X_\alpha \biggr) \times W_j=\biggl( V^c_{j,\beta} \times T_\beta \biggr) \times W_j

Observe that for each point y \in \sigma_{n+1} such that y \in V^c_{j,\beta} \times T_\beta, the point y already deviates from the base point b on one coordinate, namely \beta. Thus on the coordinates other than \beta, the point y can only deviates from b on at most n many coordinates. Thus \sigma_{n+1} \cap (V^c_{j,\beta} \times T_\beta) is homeomorphic to V^c_{j,\beta} \times \sigma_n. Note that V^c_{j,\beta} \times W_j is a separable metric space. By inductive hypothesis, V^c_{j,\beta} \times \sigma_n \times W_j is Lindelof. Thus there are countably many open sets in the open cover \mathcal{U} that covers points of H_{j,\beta} \cap (\sigma_{n+1} \times W_j).

Note that

    \sigma_{n+1} \times Y=\biggl( \bigcup_{j=1}^\infty U_j \cap \sigma_{n+1} \biggr) \cup \biggl( \bigcup \left\{H_{j,\beta} \cap (\sigma_{n+1} \times W_j): j=1,2,3,\cdots, \beta \in F_j \right\} \biggr)

To see that the left-side is a subset of the right-side, let t=(x,y) \in \sigma_{n+1} \times Y. If t \in U_j for some j, we are done. Suppose t \notin U_j for all j. Observe that y \in W_j for some j. Since t=(x,y) \notin U_j, x_\beta \notin V_{j,\beta} for some \beta \in F_j. Then t=(x,y) \in H_{j,\beta}. It is now clear that t=(x,y) \in H_{j,\beta} \cap (\sigma_{n+1} \times W_j). Thus the above set equality is established. Thus one part of \sigma_{n+1} \times Y is covered by countably many open sets in \mathcal{U} while the other part is the union of countably many Lindelof subspaces. It follows that a countable subcollection of \mathcal{U} covers \sigma_{n+1} \times Y. \blacksquare

Corollary 2
It follows from Theorem 1 that

  • If each factor space X_\alpha is a separable metric space, then each \sigma_n is a Lindelof space and that \sigma=\bigcup_{n=0}^\infty \sigma_n is a Lindelof space.
  • If each factor space X_\alpha is a compact separable metric space, then each \sigma_n is a compact space and that \sigma=\bigcup_{n=0}^\infty \sigma_n is a \sigma-compact space.

Proof of Corollary 2
The first bullet point is a clear corollary of Theorem 1. A previous post shows that \Sigma-product of compact spaces is countably compact. Thus \Sigma_{\alpha \in A} X_\alpha is a countably compact space if each X_\alpha is compact. Note that each \sigma_n is a closed subset of \Sigma_{\alpha \in A} X_\alpha and is thus countably compact. Being a Lindelof space, each \sigma_n is compact. It follows that \sigma=\bigcup_{n=0}^\infty \sigma_n is a \sigma-compact space. \blacksquare

____________________________________________________________________

A non-Lindelof space with a dense Lindelof subspace

Now we put everything together to obtain the example described at the beginning. For each \alpha \in A, let X_\alpha be a separable metric space with at least two points. Then the \Sigma-product \Sigma_{\alpha \in A} X_\alpha is collectionwise normal (see this previous post). According to the lemma in this previous post, the \Sigma-product \Sigma_{\alpha \in A} X_\alpha contains a closed copy of \omega_1. Thus the \Sigma-product \Sigma_{\alpha \in A} X_\alpha is not Lindelof. It is clear that the \sigma-product is a dense subspace of \Sigma_{\alpha \in A} X_\alpha. By Corollary 2, the \sigma-product is a Lindelof subspace of \Sigma_{\alpha \in A} X_\alpha.

Using specific factor spaces, if each X_\alpha=\mathbb{R} with the usual topology, then \Sigma_{\alpha<\omega_1} X_\alpha is a non-Lindelof space with a dense Lindelof subspace. On the other hand, if each X_\alpha=[0,1] with the usual topology, then \Sigma_{\alpha<\omega_1} X_\alpha is a non-Lindelof space with a dense \sigma-compact subspace. Another example of a non-Lindelof space with a dense Lindelof subspace is given In this previous post (see Example 1).

____________________________________________________________________

\copyright \ 2014 \text{ by Dan Ma}

Normal dense subspaces of products of “omega 1″ many separable metric factors

Is every normal dense subspace of a product of separable metric spaces collectionwise normal? This question was posed by Arkhangelskii (see Problem I.5.25 in [2]). One partial positive answer is a theorem attributed to Corson: if Y is a normal dense subspace of a product of separable spaces such that Y \times Y is normal, then Y is collectionwise normal. Another partial positive answer: assuming 2^\omega<2^{\omega_1}, any normal dense subspace of the product space of continuum many separable metric factors is collectionwise normal (see Corollary 4 in this previous post). Another partial positive answer to Arkhangelskii’s question is the theorem due to Reznichenko: If C_p(X), which is a dense subspace of the product space \mathbb{R}^X, is normal, then it is collectionwise normal (see Theorem I.5.12 in [2]). In this post, we highlight another partial positive answer to the question posted in [2]. Specifically, we prove the following theorem:

Theorem 1

    Let X=\prod_{\alpha<\omega_1} X_\alpha be a product space where each factor X_\alpha is a separable metric space. Let Y be a dense subspace of X. Then if Y is normal, then Y is collectionwise normal.

Since any normal space with countable extent is collectionwise normal (see Theorem 2 in this previous post), it suffices to prove the following theorem:

Theorem 1a

    Let X=\prod_{\alpha<\omega_1} X_\alpha be a product space where each factor X_\alpha is a separable metric space. Let Y be a dense subspace of X. Then if Y is normal, then every closed and discrete subspace of Y is countable, i.e., Y has countable extent.

Arkhangelskii’s question was studied by the author of [3] and [4]. Theorem 1 as presented in this post is essentially the Theorem 1 found in [3]. The proof given in [3] is a beautiful proof. The proof in this post is modeled on the proof in [3] with the exception that all the crucial details are filled in. Theorem 1a (as stated above) is used in [1] to show that the function space C_p(\omega_1+1) contains no dense normal subspace.

It is natural to wonder if Theorem 1 can be generalized to product space of \tau many separable metric factors where \tau is an arbitrary uncountable cardinal. The work of [4] shows that the question at the beginning of this post cannot be answered positively in ZFC. Recall the above mentioned result that assuming 2^\omega<2^{\omega_1}, any normal dense subspace of the product space of continuum many separable metric factors is collectionwise normal (see Corollary 4 in this previous post). A theorem in [4] implies that assuming 2^\omega=2^{\omega_1}, for any separable metric space M with at least 2 points, the product of continuum many copies of M contains a normal dense subspace Y that is not collectionwise normal. A side note: for this normal subspace Y, Y \times Y is necessarily not normal (according to Corson’s theorem). Thus [3] and [4] collectively show that Arkhangelskii’s question stated here at the beginning of the post is answered positively (in ZFC) among product spaces of \omega_1 many separable metric factors and that outside of the \omega_1 case, it is impossible to answer the question positively in ZFC.

____________________________________________________________________

Proving Theorem 1a

We use the following lemma. For a proof of this lemma, see the proof for Lemma 1 in this previous post.

Lemma 2

    Let X=\prod_{\alpha \in A} X_\alpha be a product of separable metrizable spaces. Let Y be a dense subspace of X. Then the following conditions are equivalent.

    1. Y is normal.
    2. For any pair of disjoint closed subsets H and K of Y, there exists a countable B \subset A such that \overline{\pi_B(H)} \cap \overline{\pi_B(K)}=\varnothing.
    3. For any pair of disjoint closed subsets H and K of Y, there exists a countable B \subset A such that \pi_B(H) and \pi_B(K) are separated in \pi_B(Y), meaning that \overline{\pi_B(H)} \cap \pi_B(K)=\pi_B(H) \cap \overline{\pi_B(K)}=\varnothing.

For any B \subset \omega_1, let \pi_B be the natural projection from the product space X=\prod_{\alpha<\omega_1} X_\alpha into the subproduct space \prod_{\alpha \in B} X_\alpha.

Proof of Theorem 1a
Let Y be a dense subspace of the product space X=\prod_{\alpha<\omega_1} X_\alpha where each factor X_\alpha has a countable base. Suppose that D is an uncountable closed and discrete subset of Y. We then construct a pair of disjoint closed subsets H and K of Y such that for all countable B \subset \omega_1, \pi_B(H) and \pi_B(K) are not separated, specifically \pi_B(H) \cap \overline{\pi_B(K)}\ne \varnothing. Here the closure is taken in the space \pi_B(Y). By Lemma 2, the dense subspace Y of X is not normal.

For each \alpha<\omega_1, let \mathcal{B}_\alpha be a countable base for the space X_\alpha. The standard basic open sets in the product space X are of the form O=\prod_{\alpha<\omega_1} O_\alpha such that

  • each O_\alpha is an open subset of X_\alpha,
  • if O_\alpha \ne X_\alpha, then O_\alpha \in \mathcal{B}_\alpha,
  • O_\alpha=X_\alpha for all but finitely many \alpha<\omega_1.

We use supp(O) to denote the finite set of \alpha such that O_\alpha \ne X_\alpha. Technically we should be working with standard basic open subsets of Y, i.e., sets of the form O \cap Y where O is a standard basic open set as described above. Since Y is dense in the product space, every standard open set contains points of Y. Thus we can simply work with standard basic open sets in the product space as long as we are working with points of Y in the construction.

Let \mathcal{M} be the collection of all standard basic open sets as described above. Since there are only \omega_1 many factors in the product space, \lvert \mathcal{M} \lvert=\omega_1. Recall that D is an uncountable closed and discrete subset of Y. Let \mathcal{M}^* be the following:

    \mathcal{M}^*=\left\{U \in \mathcal{M}: U \cap D \text{ is uncountable }  \right\}

Claim 1. \lvert \mathcal{M}^* \lvert=\omega_1.

First we show that \mathcal{M}^* \ne \varnothing. Let B \subset \omega_1 be countable. Consider these two cases: Case 1. \pi_B(D) is an uncountable subset of \prod_{\alpha \in B} X_\alpha; Case 2. \pi_B(D) is countable.

Suppose Case 1 is true. Since \prod_{\alpha \in B} X_\alpha is a product of countably many separable metric spaces, it is hereditarily Lindelof. Then there exists a point y \in \pi_B(D) such that every open neighborhood of y (open in \prod_{\alpha \in B} X_\alpha) contains uncountably many points of \pi_B(D). Thus every standard basic open set U=\prod_{\alpha \in B} U_\alpha, with y \in U, contains uncountably many points of \pi_B(D). Suppose Case 2 is true. There exists one point y \in \pi_B(D) such that y=\pi_B(t) for uncountably many t \in D. Then in either case, every standard basic open set V=\prod_{\alpha<\omega_1} V_\alpha, with supp(V) \subset B and y \in \pi_B(V), contains uncountably many points of D. Any one such V is a member of \mathcal{M}^*.

We can partition the index set \omega_1 into \omega_1 many disjoint countable sets B. Then for each such B, obtain a V \in \mathcal{M}^* in either Case 1 or Case 2. Since supp(V) \subset B, all such open sets V are distinct. Thus Claim 1 is established.

Claim 2.
There exists an uncountable H \subset D such that for each U \in \mathcal{M}^*, U \cap H \ne \varnothing and U \cap (D-H) \ne \varnothing.

Enumerate \mathcal{M}^*=\left\{U_\gamma: \gamma<\omega_1 \right\}. Choose h_0,k_0 \in U_0 \cap D with h_0 \ne k_0. Suppose that for all \beta<\gamma, two points h_\beta,k_\beta are chosen such that h_\beta,k_\beta \in U_\beta \cap D, h_\beta \ne k_\beta and such that h_\beta \notin L_\beta and k_\beta \notin L_\beta where L_\beta=\left\{h_\rho: \rho<\beta \right\} \cup \left\{k_\rho: \rho<\beta \right\}. Then choose h_\gamma,k_\gamma with h_\gamma \ne k_\gamma such that h_\gamma,k_\gamma \in U_\gamma \cap D and h_\gamma \notin L_\gamma and k_\gamma \notin L_\gamma where L_\gamma=\left\{h_\rho: \rho<\gamma \right\} \cup \left\{k_\rho: \rho<\gamma \right\}.

Let H=\left\{h_\gamma: \gamma<\omega_1 \right\} and let K=D-H. Note that K_0=\left\{k_\gamma: \gamma<\omega_1 \right\} \subset K. Based on the inductive process that is used to obtain H and K_0, it is clear that H satisfies Claim 2.

Claim 3.
For each countable B \subset \omega_1, the sets \pi_B(H) and \pi_B(K) are not separated in the space \pi_B(Y).

Let B \subset \omega_1 be countable. Consider the two cases: Case 1. \pi_B(H) is uncountable; Case 2. \pi_B(H) is countable. Suppose Case 1 is true. Since \prod_{\alpha \in B} X_\alpha is a product of countably many separable metric spaces, it is hereditarily Lindelof. Then there exists a point p \in \pi_B(H) such that every open neighborhood of p (open in \prod_{\alpha \in B} X_\alpha) contains uncountably many points of \pi_B(H). Choose h \in H such that p=\pi_B(h). Then the following statement holds:

  1. For every basic open set U=\prod_{\alpha<\omega_1} U_\alpha with h \in U such that supp(U) \subset B, the open set U contains uncountably many points of H.

Suppose Case 2 is true. There exists some p \in \pi_B(H) such that p=\pi_B(t) for uncountably many t \in H. Choose h \in H such that p=\pi_B(h). Then statement 1 also holds.

In either case, there exists h \in H such that statement 1 holds. The open sets U described in statement 1 are members of \mathcal{M}^*. By Claim 2, the open sets described in statement 1 also contain points of K. Since the open sets described in statement 1 have supports \subset B, the following statement holds:

  1. For every basic open set V=\prod_{\alpha \in B} V_\alpha with \pi_B(h) \in V, the open set V contains points of \pi_B(K).

Statement 2 indicates that \pi_B(h) \in \overline{\pi_B(K)}. Thus \pi_B(h) \in \pi_B(H) \cap \overline{\pi_B(K)}. The closure here can be taken in either \prod_{\alpha \in B} X_\alpha or \pi_B(Y) (to apply Lemma 2, we only need the latter). Thus Claim 3 is established.

Claim 3 is the negation of condition 3 of Lemma 2. Therefore Y is not normal. \blacksquare

____________________________________________________________________

Remark

The proof of Theorem 1a, though a proof in ZFC only, clearly relies on the fact that the product space is a product of \omega_1 many factors. For example, in the inductive step in the proof of Claim 2, it is always possible to pick a pair of points not chosen previously. This is because the previously chosen points form a countable set and each open set in \mathcal{M}^* contains \omega_1 many points of the closed and discrete set D. With the “\omega versus \omega_1” situation, at each step, there are always points not previously chosen. When more than \omega_1 many factors are involved, there may be no such guarantee in the inductive process.

____________________________________________________________________

Reference

  1. Arkhangelskii, A. V., Normality and dense subspaces, Proc. Amer. Math. Soc., 130 (1), 283-291, 2001.
  2. Arkhangelskii, A. V., Topological Function Spaces, Mathematics and Its Applications Series, Kluwer Academic Publishers, Dordrecht, 1992.
  3. Baturov, D. P., Normality in dense subspaces of products, Topology Appl., 36, 111-116, 1990.
  4. Baturov, D. P., On perfectly normal dense subspaces of products, Topology Appl., 154, 374-383, 2007.
  5. Engelking, R., General Topology, Revised and Completed edition, Heldermann Verlag, Berlin, 1989.

____________________________________________________________________

\copyright \ 2014 \text{ by Dan Ma}