# An example of a normal but not Lindelof Cp(X)

In this post, we discuss an example of a function space $C_p(X)$ that is normal and not Lindelof (as indicated in the title). Interestingly, much more can be said about this function space. In this post, we show that there exists a space $X$ such that

• $C_p(X)$ is collectionwise normal and not paracompact,
• $C_p(X)$ is not Lindelof but contains a dense Lindelof subspace,
• $C_p(X)$ is not first countable but is a Frechet space,
• As a corollary of the previous point, $C_p(X)$ cannot contain a copy of the compact space $\omega_1+1$,
• $C_p(X)$ is homeomorphic to $C_p(X)^\omega$,
• $C_p(X)$ is not hereditarily normal,
• $C_p(X)$ is not metacompact.

A short and quick description of the space $X$ is that $X$ is the one-point Lindelofication of an uncountable discrete space. As shown below, the function space $C_p(X)$ is intimately related to a $\Sigma$-product of copies of real lines. The results listed above are merely an introduction to this wonderful example and are derived by examining the $\Sigma$-products of copies of real lines. Deep results about $\Sigma$-product of real lines abound in the literature. The references listed at the end are a small sample. Example 3.2 in [2] is another interesting illustration of this example.

We now define the domain space $X=L_\tau$. In the discussion that follows, the Greek letter $\tau$ is always an uncountable cardinal number. Let $D_\tau$ be a set with cardinality $\tau$. Let $p$ be a point not in $D_\tau$. Let $L_\tau=D_\tau \cup \left\{p \right\}$. Consider the following topology on $L_\tau$:

• Each point in $D_\tau$ an isolated point, and
• open neighborhoods at the point $p$ are of the form $L_\tau-K$ where $K \subset D_\tau$ is countable.

It is clear that $L_\tau$ is a Lindelof space. The Lindelof space $L_\tau$ is sometimes called the one-point Lindelofication of the discrete space $D_\tau$ since it is a Lindelof space that is obtained by adding one point to a discrete space.

Consider the function space $C_p(L_\tau)$. See this post for general information on the pointwise convergence topology of $C_p(Y)$ for any completely regular space $Y$.

All the facts about $C_p(X)=C_p(L_\tau)$ mentioned at the beginning follow from the fact that $C_p(L_\tau)$ is homeomorphic to the $\Sigma$-product of $\tau$ many copies of the real lines. Specifically, $C_p(L_\tau)$ is homeomorphic to the following subspace of the product space $\mathbb{R}^\tau$.

$\Sigma_{\alpha<\tau}\mathbb{R}=\left\{ x \in \mathbb{R}^\tau: x_\alpha \ne 0 \text{ for at most countably many } \alpha<\tau \right\}$

Thus understanding the function space $C_p(L_\tau)$ is a matter of understanding a $\Sigma$-product of copies of the real lines. First, we establish the homeomorphism and then discuss the properties of $C_p(L_\tau)$ indicated above.

____________________________________________________________________

The Homeomorphism

For each $f \in C_p(L_\tau)$, it is easily seen that there is a countable set $C \subset D_\tau$ such that $f(p)=f(y)$ for all $y \in D_\tau-C$. Let $W_0=\left\{f \in C_p(L_\tau): f(p)=0 \right\}$. Then each $f \in W_0$ has non-zero values only on a countable subset of $D_\tau$. Naturally, $W_0$ and $\Sigma_{\alpha<\tau}\mathbb{R}$ are homeomorphic.

We claim that $C_p(L_\tau)$ is homeomorphic to $W_0 \times \mathbb{R}$. For each $f \in C_p(L_\tau)$, define $h(f)=(f-f(p),f(p))$. Here, $f-f(p)$ is the function $g \in C_p(L_\tau)$ such that $g(x)=f(x)-f(p)$ for all $x \in L_\tau$. Clearly $h(f)$ is well-defined and $h(f) \in W_0 \times \mathbb{R}$. It can be readily verified that $h$ is a one-to-one map from $C_p(L_\tau)$ onto $W_0 \times \mathbb{R}$. It is not difficult to verify that both $h$ and $h^{-1}$ are continuous.

We use the notation $X_1 \cong X_2$ to mean that the spaces $X_1$ and $X_2$ are homeomorphic. Then we have:

$C_p(L_\tau) \ \cong \ W_0 \times \mathbb{R} \ \cong \ (\Sigma_{\alpha<\tau}\mathbb{R}) \times \mathbb{R} \ \cong \ \Sigma_{\alpha<\tau}\mathbb{R}$

Thus $C_p(L_\tau) \ \cong \ \Sigma_{\alpha<\tau}\mathbb{R}$. This completes the proof that $C_p(L_\tau)$ is topologically the $\Sigma$-product of $\tau$ many copies of the real lines.

____________________________________________________________________

Looking at the $\Sigma$-Product

Understanding the function space $C_p(L_\tau)$ is now reduced to the problem of understanding a $\Sigma$-product of copies of the real lines. Most of the facts about $\Sigma$-products that we need have already been proved in previous blog posts.

In this previous post, it is established that the $\Sigma$-product of separable metric spaces is collectionwise normal. Thus $C_p(L_\tau)$ is collectionwise normal. The $\Sigma$-product of spaces, each of which has at least two points, always contains a closed copy of $\omega_1$ with the ordered topology (see the lemma in this previous post). Thus $C_p(L_\tau)$ contains a closed copy of $\omega_1$ and hence can never be paracompact (and thus not Lindelof).

___________________________________

Consider the following subspace of the $\Sigma$-product $\Sigma_{\alpha<\tau}\mathbb{R}$:

$\sigma_\tau=\left\{ x \in \Sigma_{\alpha<\tau}\mathbb{R}: x_\alpha \ne 0 \text{ for at most finitely many } \alpha<\tau \right\}$

In this previous post, it is shown that $\sigma_\tau$ is a Lindelof space. Though $C_p(L_\tau) \cong \Sigma_{\alpha<\tau}\mathbb{R}$ is not Lindelof, it has a dense Lindelof subspace, namely $\sigma_\tau$.

___________________________________

A space $Y$ is first countable if there exists a countable local base at each point $y \in Y$. A space $Y$ is a Frechet space (or is Frechet-Urysohn) if for each $y \in Y$, if $y \in \overline{A}$ where $A \subset Y$, then there exists a sequence $\left\{y_n: n=1,2,3,\cdots \right\}$ of points of $A$ such that the sequence converges to $y$. Clearly, any first countable space is a Frechet space. The converse is not true (see Example 1 in this previous post).

For any uncountable cardinal number $\tau$, the product $\mathbb{R}^\tau$ is not first countable. In fact, any dense subspace of $\mathbb{R}^\tau$ is not first countable. In particular, the $\Sigma$-product $\Sigma_{\alpha<\tau}\mathbb{R}$ is not first countable. In this previous post, it is shown that the $\Sigma$-product of first countable spaces is a Frechet space. Thus $C_p(L_\tau) \cong \Sigma_{\alpha<\tau}\mathbb{R}$ is a Frechet space.

___________________________________

As a corollary of the previous point, $C_p(L_\tau) \cong \Sigma_{\alpha<\tau}\mathbb{R}$ cannot contain a homeomorphic copy of any space that is not Frechet. In particular, it cannot contain a copy of any compact space that is not Frechet. For example, the compact space $\omega_1+1$ is not embeddable in $C_p(L_\tau)$. The interest in compact subspaces of $C_p(L_\tau) \cong \Sigma_{\alpha<\tau}\mathbb{R}$ is that any compact space that is topologically embeddable in a $\Sigma$-product of real lines is said to be Corson compact. Thus any Corson compact space is a Frechet space.

___________________________________

It can be readily verified that

$\Sigma_{\alpha<\tau}\mathbb{R} \ \cong \ \Sigma_{\alpha<\tau}\mathbb{R} \ \times \ \Sigma_{\alpha<\tau}\mathbb{R} \ \times \ \Sigma_{\alpha<\tau}\mathbb{R} \ \times \ \cdots \ \text{(countably many times)}$

Thus $C_p(L_\tau) \cong C_p(L_\tau)^\omega$. In particular, $C_p(L_\tau) \cong C_p(L_\tau) \times C_p(L_\tau)$ due to the following observation:

$C_p(L_\tau) \times C_p(L_\tau) \cong C_p(L_\tau)^\omega \times C_p(L_\tau)^\omega \cong C_p(L_\tau)^\omega \cong C_p(L_\tau)$

___________________________________

As a result of the peculiar fact that $C_p(L_\tau) \cong C_p(L_\tau) \times C_p(L_\tau)$, it can be concluded that $C_p(L_\tau)$, though normal, is not hereditarily normal. This follows from an application of Katetov’s theorem. The theorem states that if $Y_1 \times Y_2$ is hereditarily normal, then either $Y_1$ is perfectly normal or every countably infinite subset of $Y_2$ is closed and discrete (see this previous post). The function space $C_p(L _\tau)$ is not perfectly normal since it contains a closed copy of $\omega_1$. On the other hand, there are plenty of countably infinite subsets of $C_p(L _\tau)$ that are not closed and discrete. As a Frechet space, $C_p(L _\tau)$ has many convergent sequences. Each such sequence without the limit is a countably infinite set that is not closed and discrete. As an example, let $\left\{x_1,x_2,x_3,\cdots \right\}$ be an infinite subset of $D_\tau$ and consider the following:

$C=\left\{f_n: n=1,2,3,\cdots \right\}$

where $f_n$ is such that $f_n(x_n)=n$ and $f_n(x)=0$ for each $x \in L_\tau$ with $x \ne x_n$. Note that $C$ is not closed and not discrete since the points in $C$ converge to $g \in \overline{C}$ where $g$ is the zero-function. Thus $C_p(L_\tau) \cong C_p(L_\tau) \times C_p(L_\tau)$ is not hereditarily normal.

___________________________________

It is well known that collectionwise normal metacompact space is paracompact (see Theorem 5.3.3 in [4] where metacompact is referred to as weakly paracompact). Since $C_p(L_\tau)$ is collectionwise normal and not paracompact, $C_p(L_\tau)$ can never be metacompact.

____________________________________________________________________

Reference

1. Arkhangelskii, A. V., Topological Function Spaces, Mathematics and Its Applications Series, Kluwer Academic Publishers, Dordrecht, 1992.
2. Bella, A., Masami, S., Tight points of Pixley-Roy hyperspaces, Topology Appl., 160, 2061-2068, 2013.
3. Corson, H. H., Normality in subsets of product spaces, Amer. J. Math., 81, 785-796, 1959.
4. Engelking, R., General Topology, Revised and Completed edition, Heldermann Verlag, Berlin, 1989.

____________________________________________________________________

$\copyright \ 2014 \text{ by Dan Ma}$