# The Sorgenfrey plane is subnormal

The Sorgenfrey line is the real line with the topology generated by the base of half-open intervals of the form $[a,b)$. The Sorgenfrey line is one of the most important counterexamples in general topology. One of the often recited facts about this counterexample is that the Sorgenfrey plane (the square of the Sorgengfrey line) is not normal. We show that, though far from normal, the Sorgenfrey plane is subnormal.

A subset $M$ of a space $Y$ is a $G_\delta$ subset of $Y$ (or a $G_\delta$-set in $Y$) if $M$ is the intersection of countably many open subsets of $Y$. A subset $M$ of a space $Y$ is a $F_\sigma$ subset of $Y$ (or a $F_\sigma$-set in $Y$) if $Y-M$ is a $G_\delta$-set in $Y$ (equivalently if $M$ is the union of countably many closed subsets of $Y$).

A space $Y$ is normal if for any disjoint closed subsets $H$ and $K$ of $Y$, there exist disjoint open subsets $U_H$ and $U_K$ of $Y$ such that $H \subset U_H$ and $K \subset U_K$. A space $Y$ is subnormal if for any disjoint closed subsets $H$ and $K$ of $Y$, there exist disjoint $G_\delta$ subsets $V_H$ and $V_K$ of $Y$ such that $H \subset V_H$ and $K \subset V_K$. Clearly any normal space is subnormal. The Sorgenfrey plane is an example of a subnormal space that is not normal.

In the proof of the non-normality of the Sorgenfrey plane in this previous post, one of the two disjoint closed subsets of the Sorgenfrey plane that cannot be separated by disjoint open sets is countable. Thus the Sorgenfrey plane is not only not normal; it is not pseudonormal (also discussed in this previous post). A space $Y$ is pseudonormal if for any disjoint closed subsets $H$ and $K$ of $Y$ (one of which is countable), there exist disjoint open subsets $U_H$ and $U_K$ of $Y$ such that $H \subset U_H$ and $K \subset U_K$. The examples of the Sorgenfrey plane and $\omega_1 \times (\omega_1+1)$ show that these two weak forms of normality (pseudonormal and subnormal) are not equivalent. The space $\omega_1 \times (\omega_1+1)$ is pseudonormal but not subnormal (see this previous post for the non-subnormality).

A space $Y$ is said to be a perfect space if every closed subset of $Y$ is a $G_\delta$ subset of $Y$ (equivalently, every open subset of $Y$ is an $F_\sigma$-subset of $Y$). It is clear that any perfect space is subnormal. We show that the Sorgenfrey plane is perfect. There are subnormal spaces that are not perfect (see the example below).

____________________________________________________________________

The Sorgenfrey plane is perfect

Let $S$ denote the Sorgenfrey line, i.e., the real line $\mathbb{R}$ topologized using the base of half-open intervals of the form $[a,b)=\left\{x \in \mathbb{R}: a \le x . The Sorgenfrey plane is the product space $S \times S$. We show the following:

Proposition 1
The Sorgenfrey line $S$ is perfect.

Proof of Proposition 1
Let $U$ be a non-empty subset of $S$. We show that $U$ is a $F_\sigma$-set. Let $U_0$ be the interior of $U$ in the usual topology. In other words, $U_0$ is the following set:

$U_0=\left\{x \in U: \exists \ (a,b) \text{ such that } x \in (a,b) \text{ and } (a,b) \subset U \right\}$

The real line with the usual topology is perfect. Thus $U_0=\bigcup_{n=1}^\infty F_n$ where each $F_n$ is a closed subset of the real line $\mathbb{R}$. Since the Sorgenfrey topology is finer than the usual topology, each $F_n$ is also closed in the Sorgenfrey line.

Consider $Y=U-U_0$. We claim that $Y$ is countable. Suppose $Y$ is uncountable. Since the Sorgenfrey line is hereditarily Lindelof, there exists $y \in Y$ such that $y$ is a limit point of $Y$ (see Corollary 2 in this previous post). Since $y \in Y \subset U$, $[y,t) \subset U$ for some $t$. Note that $(y,t) \subset U_0$, which means that no point of the open interval $(y,t)$ can belong to $Y$. On the other hand, since $y$ is a limit point of $Y$, $y for some $w \in Y$, a contradiction. Thus $Y$ must be countable. It follows that $U$ is the union of countably many closed subsets of $S$. $\blacksquare$

Proposition 2
If $X$ is perfect and $Y$ is metrizable, then $X \times Y$ is perfect.

Proof of Proposition 2
Let $X$ be perfect. Let $Y$ be a space with a base $\mathcal{B}=\bigcup_{n=1}^\infty \mathcal{B}_n$ such that each $\mathcal{B}_n$, in addition to being a collection of basic open sets, is a discrete collection. The existence of such a base is equivalent to metrizability, a well known result called Bing’s metrization theorem (see Theorem 4.4.8 in [1]). Let $U$ be a non-empty open subset of $X \times Y$. We show that it is an $F_\sigma$-set in $X \times Y$. For each $x \in U$, there is some open subset $V$ of $X$ and there is some $W \in \mathcal{B}$ such that $x \in V \times W$ and $V \times \overline{W} \subset U$. Thus $U$ is the union of a collection of sets of the form $V \times \overline{W}$. Thus we have:

$U=\bigcup \mathcal{O} \text{ where } \mathcal{O}=\left\{ V_\alpha \times \overline{W_\alpha}: \alpha \in A \right\}$

for some index set $A$. For each positive integer $m$, let $\mathcal{O}_m$ be defined by

$\mathcal{O}_m=\left\{V_\alpha \times \overline{W_\alpha} \in \mathcal{O}: W_\alpha \in \mathcal{B}_m \right\}$

For each $\alpha \in A$, let $V_\alpha=\bigcup_{n=1}^\infty V_{\alpha,n}$ where each $V_{\alpha,n}$ is a closed subset of $X$. For each pair of positive integers $n$ and $m$, define $\mathcal{O}_{n,m}$ by

$\mathcal{O}_{n,m}=\left\{V_{\alpha,n} \times \overline{W_\alpha}: V_\alpha \times \overline{W_\alpha} \in \mathcal{O}_m \right\}$

We claim that each $\mathcal{O}_{n,m}$ is a discrete collection of sets in the space $X \times Y$. Let $(a,b) \in X \times Y$. Since $\mathcal{B}_m$ is discrete, there exists some open subset $H_b$ of $Y$ with $b \in H_b$ such that $H_b$ can intersect at most one $\overline{W}$ where $W \in \mathcal{B}_m$. Then $X \times H_b$ is an open subset of $X \times Y$ with $(a,b) \in X \times H_b$ such that $X \times H_b$ can intersect at most one set of the form $V_{\alpha,n} \times \overline{W_\alpha}$. Then $C_{n,m}=\bigcup \mathcal{O}_{n,m}$ is a closed subset of $X \times Y$. It is clear that $U$ is the union of $C_{n,m}$ over all countably many possible pairs $n,m$. Thus $U$ is an $F_\sigma$-set in $X \times Y$. $\blacksquare$

Proposition 3
The Sorgenfrey plane $S \times S$ is perfect.

Proof of Proposition 3
To get ready for the proof, consider the product spaces $X_1=\mathbb{R} \times S$ and $X_2=S \times \mathbb{R}$ where $\mathbb{R}$ has the usual topology. By both Proposition 1 and Proposition 2, both $X_1$ and $X_2$ are perfect. Also note that the Sorgenfrey plane topology is finer than the topologies for both $X_1$ and $X_2$. Thus a closed set in $X_1$ (in $X_2$) is also a closed set in $S \times S$. It follows that any $F_\sigma$-set in $X_1$ (in $X_2$) is also an $F_\sigma$-set in $S \times S$.

Let $U$ be a non-empty subset of $S \times S$. We show that $U$ is a $F_\sigma$-set. We assume that $U$ is the union of basic open sets of the form $[a,b) \times [a,b)$. Consider the sets $U_1$ and $U_2$ defined by:

$U_1=\left\{x \in U: \exists \ (a,b) \times [a,b) \text{ such that } x \in (a,b) \times [a,b) \text{ and } (a,b) \times [a,b) \subset U \right\}$

$U_2=\left\{x \in U: \exists \ [a,b) \times (a,b) \text{ such that } x \in [a,b) \times (a,b) \text{ and } [a,b) \times (a,b) \subset U \right\}$

Note that $U_1$ is the interior of $U$ when $U$ is considered as a subspace of $X_1$. Likewise, $U_2$ is the interior of $U$ when $U$ is considered as a subspace of $X_2$. Since both $X_1$ and $X_2$ are perfect, $U_1$ and $U_2$ are $F_\sigma$ in $X_1$ and $X_2$, respectively. Hence both $U_1$ and $U_2$ are $F_\sigma$-sets in $S \times S$.

Let $Y=U-(U_1 \cup U_2)$. We claim that $Y$ is an $F_\sigma$-set in $S \times S$. Proposition 3 is established when this claim is proved. To get ready to prove this claim, for each $x=(x_1,x_2) \in S \times S$, and for each positive integer $k$, let $B_k(x)$ be the half-open square $B_k(x)=[x_1,x_1+\frac{1}{k}) \times [x_2,x_2+\frac{1}{k})$. Then $\mathcal{B}(x)=\left\{B_k(x): k=1,2,3,\cdots \right\}$ is a local base at the point $x$. For each positive integer $k$, define $Y_k$ by

$Y_k=\left\{y=(y_1,y_2) \in Y: B_k(y) \subset U \right\}$

Clearly $Y=\bigcup_{k=1}^\infty Y_k$. We claim that each $Y_k$ is closed in $S \times S$. Suppose $x=(x_1,x_2) \in S \times S-Y_k$. In relation to the point $x$, $Y_k$ can be broken into several subsets as follows:

$Y_{k,1}=\left\{y=(y_1,y_2) \in Y_k: y_1=x_1 \text{ and } y_2 \ne x_2 \right\}$

$Y_{k,2}=\left\{y=(y_1,y_2) \in Y_k: y_1 \ne x_1 \text{ and } y_2 = x_2 \right\}$

$Y_{k,\varnothing}=\left\{y=(y_1,y_2) \in Y_k: y_1 \ne x_1 \text{ and } y_2 \ne x_2 \right\}$

Since $x \notin Y_k$, it follows that $Y_k=Y_{k,1} \cup Y_{k,2} \cup Y_{k,\varnothing}$. We show that for each of these three sets, there is an open set containing the point $x$ that is disjoint from the set.

Consider $Y_{k,1}$. If $B_k(x)=[x_1,x_1+\frac{1}{k}) \times [x_2,x_2+\frac{1}{k})$ is disjoint from $Y_{k,1}$, then we are done. So assume $B_k(x) \cap Y_{k,1} \ne \varnothing$. Let $t=(t_1,t_2) \in B_k(x) \cap Y_{k,1}$. Note that $t_1=x_1$ and $t_2 > x_2$. Now consider the following open set:

$G=B_k(x) \cap \left\{y=(y_1,y_2) \in S \times S: y_2

The set $G$ is an open set containing the point $x$. We claim that $G \cap Y_{k,1}=\varnothing$. Suppose $g \in G \cap Y_{k,1}$. Then $g_1=x_1$ and $x_2. Consider the following set:

$H=B_k(g) \cap \left\{h=(h_1,h_2) \in S \times S: g_2

Note that $H$ is an open subset of $X_2=S \times \mathbb{R}$. Since $g \in Y_k$, it follows that $H \subset B_k(g) \subset U$. Thus $H$ is a subset of the interior of $U$ (as a subspace of $X_2$). We have $H \subset U_2$. It follows that $t \in H$ since

$x_1=g_1=t_1$

$x_2

On the other hand, $t \in Y_{k,1} \subset Y_k \subset Y$. Hence $t \notin U_2$, a contradiction. Thus the claim that $G \cap Y_{k,1}=\varnothing$ must be true.

The case $Y_{k,2}$ is symmetrical to the case $Y_{k,1}$. Thus by applying a similar argument, there is an open set containing the point $x$ that is disjoint from the set $Y_{k,2}$.

Now consider the case $Y_{k,\varnothing}$. If $B_k(x)=[x_1,x_1+\frac{1}{k}) \times [x_2,x_2+\frac{1}{k})$ is disjoint from $Y_{k,\varnothing}$, then we are done. So assume $B_k(x) \cap Y_{k,\varnothing} \ne \varnothing$. Let $t=(t_1,t_2) \in B_k(x) \cap Y_{k,\varnothing}$. Note that $t_1>x_1$ and $t_2 > x_2$. Now consider the following open set:

$G=B_k(x) \cap \left\{y=(y_1,y_2) \in S \times S: y_1

The set $G$ is an open set containing the point $x$. We claim that $G \cap Y_{k,\varnothing}=\varnothing$. Suppose $g \in G \cap Y_{k,\varnothing}$. Then $x_1 and $x_2. Consider the following set:

$H=B_k(g) \cap \left\{h=(h_1,h_2) \in S \times S: g_2

As in the previous case, $H$ is an open subset of $X_2=S \times \mathbb{R}$. Since $g \in Y_k$, it follows that $H \subset B_k(g) \subset U$. As before, $H \subset U_2$. We also have a contradiction in that $t \in H$ (based on the following)

$x_1

$x_2

and on the one hand and $t \in Y_{k,\varnothing} \subset Y=U-(U_1 \cup U_2)$. Thus the claim that $G \cap Y_{k,\varnothing}=\varnothing$ is true. Take the intersection of the three open sets from the three cases, we have an open set containing $x$ that is disjoint from $Y_k$. Thus $Y_k$ is closed in $S \times S$ and $Y=\bigcup_{k=1}^\infty Y_k$ is $F_\sigma$ in $S \times S$ . $\blacksquare$

Remarks
The authors of [2] showed that any finite power of the Sorgenfrey line is perfect. The proof in [2] is an inductive proof: if $S^n$ is perfect, then $S^{n+1}$ is perfect. We take the inductive proof in [2] and adapt it for the Sorgenfrey plane. The authors in [2] also proved that for a sequence of spaces $X_1,X_2,X_3,\cdots$ such that the product of any finite number of these spaces is perfect, the product $\prod_{n=1}^\infty X_n$ is perfect. Then $S^\omega$ is perfect.

____________________________________________________________________

A non-perfect example

Any perfect space is subnormal. Subnormal spaces do not have to be perfect. In fact subnormal non-normal spaces do not have to be perfect. From a perfect space that is not normal (e.g. the Sorgenfrey plane), one can generate a subnormal and non-normal space that is not perfect. Let $X$ be a subnormal and non-normal space. Let $Y$ be a normal space that is not perfectly normal. There are many possible choices for $Y$. If a specific example is needed, one can take $Y=\omega_1$ with the order topology. Let $X \bigoplus Y$ be the disjoint sum (union) of $X$ and $Y$. The presence of $Y$ destroys the perfectness. It is clear that any two disjoint closed sets can be separated by disjoint $G_\delta$-sets.

____________________________________________________________________

Reference

1. Engelking, R., General Topology, Revised and Completed edition, Heldermann Verlag, Berlin, 1989.
2. Heath, R. W., Michael, E., A property of the Sorgenfrey line, Compositio Math., 23, 185-188, 1971.

____________________________________________________________________
$\copyright \ 2014 \text{ by Dan Ma}$