Normality in the powers of countably compact spaces

Let \omega_1 be the first uncountable ordinal. The topology on \omega_1 we are interested in is the ordered topology, the topology induced by the well ordering. The space \omega_1 is also called the space of all countable ordinals since it consists of all ordinals that are countable in cardinality. It is a handy example of a countably compact space that is not compact. In this post, we consider normality in the powers of \omega_1. We also make comments on normality in the powers of a countably compact non-compact space.

Let \omega be the first infinite ordinal. It is well known that \omega^{\omega_1}, the product space of \omega_1 many copies of \omega, is not normal (a proof can be found in this earlier post). This means that any product space \prod_{\alpha<\kappa} X_\alpha, with uncountably many factors, is not normal as long as each factor X_\alpha contains a countable discrete space as a closed subspace. Thus in order to discuss normality in the product space \prod_{\alpha<\kappa} X_\alpha, the interesting case is when each factor is infinite but contains no countable closed discrete subspace (i.e. no closed copies of \omega). In other words, the interesting case is that each factor X_\alpha is a countably compact space that is not compact (see this earlier post for a discussion of countably compactness). In particular, we would like to discuss normality in X^{\kappa} where X is a countably non-compact space. In this post we start with the space X=\omega_1 of the countable ordinals. We examine \omega_1 power \omega_1^{\omega_1} as well as the countable power \omega_1^{\omega}. The former is not normal while the latter is normal. The proof that \omega_1^{\omega} is normal is an application of the normality of \Sigma-product of the real line.

____________________________________________________________________

The uncountable product

Theorem 1
The product space \prod_{\alpha<\omega_1} \omega_1=\omega_1^{\omega_1} is not normal.

Theorem 1 follows from Theorem 2 below. For any space X, a collection \mathcal{C} of subsets of X is said to have the finite intersection property if for any finite \mathcal{F} \subset \mathcal{C}, the intersection \cap \mathcal{F} \ne \varnothing. Such a collection \mathcal{C} is called an f.i.p collection for short. It is well known that a space X is compact if and only collection \mathcal{C} of closed subsets of X satisfying the finite intersection property has non-empty intersection (see Theorem 1 in this earlier post). Thus any non-compact space has an f.i.p. collection of closed sets that have empty intersection.

In the space X=\omega_1, there is an f.i.p. collection of cardinality \omega_1 using its linear order. For each \alpha<\omega_1, let C_\alpha=\left\{\beta<\omega_1: \alpha \le \beta \right\}. Let \mathcal{C}=\left\{C_\alpha: \alpha < \omega_1 \right\}. It is a collection of closed subsets of X=\omega_1. It is an f.i.p. collection and has empty intersection. It turns out that for any countably compact space X with an f.i.p. collection of cardinality \omega_1 that has empty intersection, the product space X^{\omega_1} is not normal.

Theorem 2
Let X be a countably compact space. Suppose that there exists a collection \mathcal{C}=\left\{C_\alpha: \alpha < \omega_1 \right\} of closed subsets of X such that \mathcal{C} has the finite intersection property and that \mathcal{C} has empty intersection. Then the product space X^{\omega_1} is not normal.

Proof of Theorem 2
Let’s set up some notations on product space that will make the argument easier to follow. By a standard basic open set in the product space X^{\omega_1}=\prod_{\alpha<\omega_1} X, we mean a set of the form O=\prod_{\alpha<\omega_1} O_\alpha such that each O_\alpha is an open subset of X and that O_\alpha=X for all but finitely many \alpha<\omega_1. Given a standard basic open set O=\prod_{\alpha<\omega_1} O_\alpha, the notation \text{Supp}(O) refers to the finite set of \alpha for which O_\alpha \ne X. For any set M \subset \omega_1, the notation \pi_M refers to the projection map from \prod_{\alpha<\omega_1} X to the subproduct \prod_{\alpha \in M} X. Each element d \in X^{\omega_1} can be considered a function d: \omega_1 \rightarrow X. By (d)_\alpha, we mean (d)_\alpha=d(\alpha).

For each t \in X, let f_t: \omega_1 \rightarrow X be the constant function whose constant value is t. Consider the following subspaces of X^{\omega_1}.

    H=\prod_{\alpha<\omega_1} C_\alpha

    \displaystyle K=\left\{f_t: t \in X  \right\}

Both H and K are closed subsets of the product space X^{\omega_1}. Because the collection \mathcal{C} has empty intersection, H \cap K=\varnothing. We show that H and K cannot be separated by disjoint open sets. To this end, let U and V be open subsets of X^{\omega_1} such that H \subset U and K \subset V.

Let d_1 \in H. Choose a standard basic open set O_1 such that d_1 \in O_1 \subset U. Let S_1=\text{Supp}(O_1). Since S_1 is the support of O_1, it follows that \pi_{S_1}^{-1}(\pi_{S_1}(d_1)) \subset O_1 \subset U. Since \mathcal{C} has the finite intersection property, there exists a_1 \in \bigcap_{\alpha \in S_1} C_\alpha.

Define d_2 \in H such that (d_2)_\alpha=a_1 for all \alpha \in S_1 and (d_2)_\alpha=(d_1)_\alpha for all \alpha \in \omega_1-S_1. Choose a standard basic open set O_2 such that d_2 \in O_2 \subset U. Let S_2=\text{Supp}(O_2). It is possible to ensure that S_1 \subset S_2 by making more factors of O_2 different from X. We have \pi_{S_2}^{-1}(\pi_{S_2}(d_2)) \subset O_2 \subset U. Since \mathcal{C} has the finite intersection property, there exists a_2 \in \bigcap_{\alpha \in S_2} C_\alpha.

Now choose a point d_3 \in H such that (d_3)_\alpha=a_2 for all \alpha \in S_2 and (d_3)_\alpha=(d_2)_\alpha for all \alpha \in \omega_1-S_2. Continue on with this inductive process. When the inductive process is completed, we have the following sequences:

  • a sequence d_1,d_2,d_3,\cdots of point of H=\prod_{\alpha<\omega_1} C_\alpha,
  • a sequence S_1 \subset S_2 \subset S_3 \subset \cdots of finite subsets of \omega_1,
  • a sequence a_1,a_2,a_3,\cdots of points of X

such that for all n \ge 2, (d_n)_\alpha=a_{n-1} for all \alpha \in S_{n-1} and \pi_{S_n}^{-1}(\pi_{S_n}(d_n)) \subset U. Let A=\left\{a_1,a_2,a_3,\cdots \right\}. Either A is finite or A is infinite. Let’s examine the two cases.

Case 1
Suppose that A is infinite. Since X is countably compact, A has a limit point a. That means that every open set containing a contains some a_n \ne a. For each n \ge 2, define y_n \in \prod_{\alpha< \omega_1} X such that

  • (y_n)_\alpha=(d_n)_\alpha=a_{n-1} for all \alpha \in S_n,
  • (y_n)_\alpha=a for all \alpha \in \omega_1-S_n

From the induction step, we have y_n \in \pi_{S_n}^{-1}(\pi_{S_n}(d_n)) \subset U for all n. Let t=f_a \in K, the constant function whose constant value is a. It follows that t is a limit of \left\{y_1,y_2,y_3,\cdots \right\}. This means that t \in \overline{U}. Since t \in K \subset V, U \cap V \ne \varnothing.

Case 2
Suppose that A is finite. Then there is some m such that a_m=a_j for all j \ge m. For each n \ge 2, define y_n \in \prod_{\alpha< \omega_1} X such that

  • (y_n)_\alpha=(d_n)_\alpha=a_{n-1} for all \alpha \in S_n,
  • (y_n)_\alpha=a_m for all \alpha \in \omega_1-S_n

As in Case 1, we have y_n \in \pi_{S_n}^{-1}(\pi_{S_n}(d_n)) \subset U for all n. Let t=f_{a_m} \in K, the constant function whose constant value is a_m. It follows that t=y_n for all n \ge m+1. Thus U \cap V \ne \varnothing.

Both cases show that U \cap V \ne \varnothing. This completes the proof the product space X^{\omega_1} is not normal. \blacksquare

____________________________________________________________________

The countable product

Theorem 3
The product space \prod_{\alpha<\omega} \omega_1=\omega_1^{\omega} is normal.

Proof of Theorem 3
The proof here actually proves more than normality. It shows that \prod_{\alpha<\omega} \omega_1=\omega_1^{\omega} is collectionwise normal, which is stronger than normality. The proof makes use of the \Sigma-product of \kappa many copies of \mathbb{R}, which is the following subspace of the product space \mathbb{R}^{\kappa}.

    \Sigma(\kappa)=\left\{x \in \mathbb{R}^{\kappa}: x(\alpha) \ne 0 \text{ for at most countably many } \alpha<\kappa \right\}

It is well known that \Sigma(\kappa) is collectionwise normal (see this earlier post). We show that \prod_{\alpha<\omega} \omega_1=\omega_1^{\omega} is a closed subspace of \Sigma(\kappa) where \kappa=\omega_1. Thus \omega_1^{\omega} is collectionwise normal. This is established in the following claims.

Claim 1
We show that the space \omega_1 is embedded as a closed subspace of \Sigma(\omega_1).

For each \beta<\omega_1, define f_\beta:\omega_1 \rightarrow \mathbb{R} such that f_\beta(\gamma)=1 for all \gamma<\beta and f_\beta(\gamma)=0 for all \beta \le \gamma <\omega_1. Let W=\left\{f_\beta: \beta<\omega_1 \right\}. We show that W is a closed subset of \Sigma(\omega_1) and W is homeomorphic to \omega_1 according to the mapping f_\beta \rightarrow W.

First, we show W is closed by showing that \Sigma(\omega_1)-W is open. Let y \in \Sigma(\omega_1)-W. We show that there is an open set containing y that contains no points of W.

Suppose that for some \gamma<\omega_1, y_\gamma \in O=\mathbb{R}-\left\{0,1 \right\}. Consider the open set Q=(\prod_{\alpha<\omega_1} Q_\alpha) \cap \Sigma(\omega_1) where Q_\alpha=\mathbb{R} except that Q_\gamma=O. Then y \in Q and Q \cap W=\varnothing.

So we can assume that for all \gamma<\omega_1, y_\gamma \in \left\{0, 1 \right\}. There must be some \theta such that y_\theta=1. Otherwise, y=f_0 \in W. Since y \ne f_\theta, there must be some \delta<\gamma such that y_\delta=0. Now choose the open interval T_\theta=(0.9,1.1) and the open interval T_\delta=(-0.1,0.1). Consider the open set M=(\prod_{\alpha<\omega_1} M_\alpha) \cap \Sigma(\omega_1) such that M_\alpha=\mathbb{R} except for M_\theta=T_\theta and M_\delta=T_\delta. Then y \in M and M \cap W=\varnothing. We have just established that W is closed in \Sigma(\omega_1).

Consider the mapping f_\beta \rightarrow W. Based on how it is defined, it is straightforward to show that it is a homeomorphism between \omega_1 and W.

Claim 2
The \Sigma-product \Sigma(\omega_1) has the interesting property it is homeomorphic to its countable power, i.e.

    \Sigma(\omega_1) \cong \Sigma(\omega_1) \times \Sigma(\omega_1) \times \Sigma(\omega_1) \cdots \ \ \ \ \ \ \ \ \ \ \ \text{(countably many times)}.

Because each element of \Sigma(\omega_1) is nonzero only at countably many coordinates, concatenating countably many elements of \Sigma(\omega_1) produces an element of \Sigma(\omega_1). Thus Claim 2 can be easily verified. With above claims, we can see that

    \displaystyle \omega_1^{\omega}=\omega_1 \times \omega_1 \times \omega_1 \times \cdots \subset \Sigma(\omega_1) \times \Sigma(\omega_1) \times \Sigma(\omega_1) \cdots \cong \Sigma(\omega_1)

Thus \omega_1^{\omega} is a closed subspace of \Sigma(\omega_1). Any closed subspace of a collectionwise normal space is collectionwise normal. We have established that \omega_1^{\omega} is normal. \blacksquare

____________________________________________________________________

The normality in the powers of X

We have established that \prod_{\alpha<\omega_1} \omega_1=\omega_1^{\omega_1} is not normal. Hence any higher uncountable power of \omega_1 is not normal. We have also established that \prod_{\alpha<\omega} \omega_1=\omega_1^{\omega}, the countable power of \omega_1 is normal (in fact collectionwise normal). Hence any finite power of \omega_1 is normal. However \omega_1^{\omega} is not hereditarily normal. One of the exercises below is to show that \omega_1 \times \omega_1 is not hereditarily normal.

Theorem 2 can be generalized as follows:

Theorem 4
Let X be a countably compact space has an f.i.p. collection \mathcal{C} of closed sets such that \bigcap \mathcal{C}=\varnothing. Then X^{\kappa} is not normal where \kappa=\lvert \mathcal{C} \lvert.

The proof of Theorem 2 would go exactly like that of Theorem 2. Consider the following two theorems.

Theorem 5
Let X be a countably compact space that is not compact. Then there exists a cardinal number \kappa such that X^{\kappa} is not normal and X^{\tau} is normal for all cardinal number \tau<\kappa.

By the non-compactness of X, there exists an f.i.p. collection \mathcal{C} of closed subsets of X such that \bigcap \mathcal{C}=\varnothing. Let \kappa be the least cardinality of such an f.i.p. collection. By Theorem 4, that X^{\kappa} is not normal. Because \kappa is least, any smaller power of X must be normal.

Theorem 6
Let X be a space that is not countably compact. Then X^{\kappa} is not normal for any cardinal number \kappa \ge \omega_1.

Since the space X in Theorem 6 is not countably compact, it would contain a closed and discrete subspace that is countable. By a theorem of A. H. Stone, \omega^{\omega_1} is not normal. Then \omega^{\omega_1} is a closed subspace of X^{\omega_1}.

Thus between Theorem 5 and Theorem 6, we can say that for any non-compact space X, X^{\kappa} is not normal for some cardinal number \kappa. The \kappa from either Theorem 5 or Theorem 6 is at least \omega_1. Interestingly for some spaces, the \kappa can be much smaller. For example, for the Sorgenfrey line, \kappa=2. For some spaces (e.g. the Michael line), \kappa=\omega.

Theorems 4, 5 and 6 are related to a theorem that is due to Noble.

Theorem 7 (Noble)
If each power of a space X is normal, then X is compact.

A proof of Noble’s theorem is given in this earlier post, the proof of which is very similar to the proof of Theorem 2 given above. So the above discussion the normality of powers of X is just another way of discussing Theorem 7. According to Theorem 7, if X is not compact, some power of X is not normal.

The material discussed in this post is excellent training ground for topology. Regarding powers of countably compact space and product of countably compact spaces, there are many topics for further discussion/investigation. One possibility is to examine normality in X^{\kappa} for more examples of countably compact non-compact X. One particular interesting example would be a countably compact non-compact X such that the least power \kappa for non-normality in X^{\kappa} is more than \omega_1. A possible candidate could be the second uncountable ordinal \omega_2. By Theorem 2, \omega_2^{\omega_2} is not normal. The issue is whether the \omega_1 power \omega_2^{\omega_1} and countable power \omega_2^{\omega} are normal.

____________________________________________________________________

Exercises

Exercise 1
Show that \omega_1 \times \omega_1 is not hereditarily normal.

Exercise 2
Show that the mapping f_\beta \rightarrow W in Claim 3 in the proof of Theorem 3 is a homeomorphism.

Exercise 3
The proof of Theorem 3 shows that the space \omega_1 is a closed subspace of the \Sigma-product of the real line. Show that \omega_1 can be embedded in the \Sigma-product of arbitrary spaces.

For each \alpha<\omega_1, let X_\alpha be a space with at least two points. Let p \in \prod_{\alpha<\omega_1} X_\alpha. The \Sigma-product of the spaces X_\alpha is the following subspace of the product space \prod_{\alpha<\omega_1} X_\alpha.

    \Sigma(X_\alpha)=\left\{x \in \prod_{\alpha<\omega_1} X_\alpha: x(\alpha) \ne p(\alpha) \ \text{for at most countably many } \alpha<\omega_1 \right\}

The point p is the center of the \Sigma-product. Show that the space \Sigma(X_\alpha) contains \omega_1 as a closed subspace.

Exercise 4
Find a direct proof of Theorem 3, that \omega_1^{\omega} is normal.

____________________________________________________________________
\copyright \ 2015 \text{ by Dan Ma}

The product of uncountably many factors is never hereditarily normal

The space Y=\prod_{\alpha<\omega_1} \left\{0,1 \right\}=\left\{0,1 \right\}^{\omega_1} is the product of \omega_1 many copies of the two-element set \left\{0,1 \right\} where \omega_1 is the first uncountable ordinal. It is a compact space by Tychonoff’s theorem. It is a normal space since every compact Hausdorff space is normal. A space is hereditarily normal if every subspace is normal. Is the space Y hereditarily normal? In this post, we give two proofs that it is not hereditarily normal. It then follows that any product space \prod X_\alpha cannot be hereditarily normal as long as there are uncountably many factors and every factor has at least two point.

____________________________________________________________________

The connection with a theorem of Katetov

It turns out that there is a connection with a theorem of Katetov. For any compact space, knowing hereditary normality of the first several self product spaces can reveal a great deal of information about the compact space. More specifically, for any compact space X, knowing whether X, X^2 and X^3 are hereditarily normal can tell us whether X is metrizable. If all three are hereditarily normal, then X is metrizable. If one of the three self products is not hereditarily normal, then X is not metrizable. This fact is based on a theorem of Katetov (see this previous post). The space Y=\left\{0,1 \right\}^{\omega_1} is not metrizable since it is not first countable (see Problem 1 below). Thus one of its first three self products must fail to be hereditarily normal.

These two proofs are not direct proof in the sense that a non-normal subspace is not explicitly produced. Instead the proofs use other theorem or basic but important background results. One of the two proofs (#2) uses a theorem of Katetov on hereditarily normal spaces. The other proof (#1) uses the fact that the product of uncountably many copies of a countable discrete space is not normal. We believe that these two proofs and the required basic facts are an important training ground for topology. We list out these basic facts as exercises. Anyone who wishes to fill in the gaps can do so either by studying the links provided or by consulting other sources.

The theorem of Katetov mentioned earlier provides a great exercise – for any non-metrizable compact space X, determine where the hereditary normality fails. Does it fail in X, X^2 or X^3? This previous post examines a small list of compact non-metrizable spaces. In all the examples in this list, the hereditary normality fails in X or X^2. The space Y=\left\{0,1 \right\}^{\omega_1} can be added to this list. All the examples in this list are defined using no additional set theory axioms beyond ZFC. A natural question: does there exist an example of compact non-metrizable space X such that the hereditary normality holds in X^2 and fails in X^3? It turns out that this was a hard problem and the answer is independent of ZFC. This previous post provides a brief discussion and has references for the problem.

All spaces under consideration are Hausdorff spaces.

____________________________________________________________________

Exercises

Problem 1
Let X be a compact space. Show that X is normal.

Problem 2
For each \alpha<\omega_1, let A_\alpha be a set with cardinality \le \omega_1. Show that \lvert \bigcup_{\alpha<\omega_1} A_\alpha \lvert \le \omega_1.

Problem 2 holds for any infinite cardinal, not just \omega_1. One reference for Problem 2 is Lemma 10.21 on page 30 of Set Theorey, An Introduction to Independence Proofs by Kenneth Kunen.

Problem 3
For each \alpha<\omega_1, let X_\alpha be a space with at least two points. Show that for every point p \in \prod_{\alpha<\omega_1} X_\alpha, there does not exist a countable base at the point p. In other words, the product space \prod_{\alpha<\omega_1} X_\alpha is not first countable at every point. It follows that product space \prod_{\alpha<\omega_1} X_\alpha is not metrizable.

Problem 4
In any space, a G_\delta-set is a set that is the intersection of countably many open sets. When a singleton set \left\{ x \right\} is a G_\delta-set, we say the point x is a G_\delta-point. For each \alpha<\omega_1, let X_\alpha be a space with at least two points. Show that every point p in the product space \prod_{\alpha<\omega_1} X_\alpha is not a G_\delta-point.

Note that Problem 4 implies Problem 3.

For Problem 3 and Problem 4, use the fact that there are uncountably many factors and that a basic open set in the product space is of the form \prod_{\alpha<\omega_1} O_\alpha and that it has only finitely many coordinates at which O_\alpha \ne X_\alpha.

Problem 5
For each \alpha<\omega_1, let X_\alpha=\left\{0,1,2,\cdots \right\} be the set of non-negative integers with the discrete topology. Show that the product space \prod_{\alpha<\omega_1} X_\alpha is not normal.

See here for a discussion of Problem 5.

Problem 6
Let \displaystyle Y=\left\{0,1 \right\}^{\omega_1}. Show that Y has a countably infinite subspace

    W=\left\{y_0,y_1,y_2,y_3\cdots \right\}

such that W is relatively discrete. In other words, W is discrete in the subspace topology of W. However W is not discrete in the product space Y since Y is compact.

____________________________________________________________________

Proof #1

Let \displaystyle Y=\left\{0,1 \right\}^{\omega_1}. We show that Y is not hereditarily normal.

Note that the product space \displaystyle Y=\left\{0,1 \right\}^{\omega_1} can be written as the product of \omega_1 many copies of itself:

    \displaystyle \left\{0,1 \right\}^{\omega_1} \cong \left\{0,1 \right\}^{\omega_1} \times \left\{0,1 \right\}^{\omega_1} \times \left\{0,1 \right\}^{\omega_1} \times \cdots \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (1)

The fact (1) follows from the fact that the union of \omega_1 many pairwise disjoint sets, each of which has cardinality \omega_1, has cardinality \omega_1 (see Problem 2). The space \left\{0,1 \right\}^{\omega_1} has a countably infinite subspace that is relatively discrete (see Problem 6). In other words, it has a subspace that is homemorphic to \omega=\left\{0,1,2,\cdots \right\} where \omega has the discrete topology. Thus the following is homeomorphic to a subspace of \displaystyle Y=\left\{0,1 \right\}^{\omega_1}.

    \displaystyle \omega^{\omega_1} = \omega \times \omega \times \omega \times \cdots \ \ \ \ \ \ \ \  \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (2)

By Problem 5, the space \omega^{\omega_1} is not normal. Hence the compact space \displaystyle Y=\left\{0,1 \right\}^{\omega_1} contains the non-normal space \omega^{\omega_1} and is thus not hereditarily normal. \blacksquare

____________________________________________________________________

Proof #2

Let \displaystyle Y=\left\{0,1 \right\}^{\omega_1}. We show that Y is not hereditarily normal. This proof uses a theorem of Katetov, discussed in this previous post and stated below.

Theorem 1
If X_1 \times X_2 is hereditarily normal (i.e. every one of its subspaces is normal), then one of the following condition holds:

  • The factor X_1 is perfectly normal.
  • Every countable and infinite subset of the factor X_2 is closed.

First, Y can be written as the product of two copies of itself:

    \displaystyle \left\{0,1 \right\}^{\omega_1} \cong \left\{0,1 \right\}^{\omega_1} \times \left\{0,1 \right\}^{\omega_1} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (3)

This is because the union of two disjoints sets, each of which has cardinality \omega_1, has carinality \omega_1. Note that the countably infinite subset W from Problem 6 is not a closed subset of Y. If it were, the compact space Y would contain an infinite set with no limit point. Thus the second condition of Theorem 1 is not satisfied. If Y \cong Y \times Y were to be hereditarily normal, then the first condition must be satisfied, i.e. Y is perfectly normal (meaning that Y is normal and that every closed subset of it is a G_\delta-set). However, Problem 4 indicates that no point in Y can be a G_\delta point. Therefore Y cannot be hereditarily normal. \blacksquare

____________________________________________________________________

Corollary

The product of uncountably many spaces, each one of which has at least two points, contains a homeomorphic copy of the space \displaystyle Y=\left\{0,1 \right\}^{\omega_1}. Thus such a product space can never be hereditarily normal. We state this more formally below.

Theorem 2
Let \kappa be any uncountable cardinal. For each \alpha<\kappa, let X_\alpha be a space with at least two points. Then \prod_{\alpha<\kappa} X_\alpha is not hereditarily normal.

____________________________________________________________________
\copyright \ 2015 \text{ by Dan Ma}