Counterexample 106 from Steen and Seebach

As the title suggests, this post discusses counterexample 106 in Steen and Seebach [2]. We extend the discussion by adding two facts not found in [2].

The counterexample 106 is the space X=\omega_1 \times I^I, which is the product of \omega_1 with the interval topology and the product space I^I=\prod_{t \in I} I where I is of course the unit interval [0,1]. The notation of \omega_1, the first uncountable ordinal, in Steen and Seebach is [0,\Omega).

Another way to notate the example X is the product space \prod_{t \in I} X_t where X_0 is \omega_1 and X_t is the unit interval I for all t>0. Thus in this product space, all factors except for one factor is the unit interval and the lone non-compact factor is the first uncountable ordinal. The factor of \omega_1 makes this product space an interesting example.

The following lists out the basic topological properties of the space that X=\omega_1 \times I^I are covered in [2].

  • The space X is Hausdorff and completely regular.
  • The space X is countably compact.
  • The space X is neither compact nor sequentially compact.
  • The space X is neither separable, Lindelof nor \sigma-compact.
  • The space X is not first countable.
  • The space X is locally compact.

All the above bullet points are discussed in Steen and Seebach. In this post we add the following two facts.

  • The space X is not normal.
  • The space X has a dense subspace that is normal.

It follows from these bullet points that the space X is an example of a completely regular space that is not normal. Not being a normal space, X is then not metrizable. Of course there are other ways to show that X is not metrizable. One is that neither of the two factors \omega_1 or I^I is metrizable. Another is that X is not first countable.


The space X is not normal

Now we are ready to discuss the non-normality of the example. It is a natural question to ask whether the example X=\omega_1 \times I^I is normal. The fact that it was not discussed in [2] could be that the tool for answering the normality question was not yet available at the time [2] was originally published, though we do not know for sure. It turns out that the tool became available in the paper [1] published a few years after the publication of [2]. The key to showing the normality (or the lack of) in the example X=\omega_1 \times I^I is to show whether the second factor I^I is a countably tight space.

The main result in [1] is discussed in this previous post. Theorem 1 in the previous post states that for any compact space Y, the product \omega_1 \times Y is normal if and only if Y is countably tight. Thus the normality of the space X (or the lack of) hinges on whether the compact factor I^I=\prod_{t \in I} I is countably tight.

A space Y is countably tight (or has countable tightness) if for each S \subset Y and for each x \in \overline{S}, there exists some countable B \subset S such that x \in \overline{B}. The definitions of tightness in general and countable tightness in particular are discussed here.

To show that the product space I^I=\prod_{t \in I} I is not countably tight, we let S be the subspace of I^I consisting of points, each of which is non-zero on at most countably many coordinates. Specifically S is defined as follows:

    S=\Sigma_{t \in I} I=\left\{y \in I^I: y(t) \ne 0 \text{ for at most countably many } t \in I \right\}

The set S just defined is also called the \Sigma-product of copies of unit interval I. Let g \in I^I be defined by g(t)=1 for all t \in I. It follows that g \in \overline{S}. It can also be verified that g \notin \overline{B} for any countable B \subset S. This shows that the product space I^I=\prod_{t \in I} I is not countably tight.

By Theorem 1 found in this link, the space X=\omega_1 \times I^I is not normal.


The space X has a dense subspace that is normal

Now that we know X=\omega_1 \times I^I is not normal, a natural question is whether it has a dense subspace that is normal. Consider the subspace \omega_1 \times S where S is the \Sigma-product S=\Sigma_{t \in I} I defined in the preceding section. The subspace S is dense in the product space I^I. Thus \omega_1 \times S is dense in X=\omega_1 \times I^I. The space S is normal since the \Sigma-product of separable metric spaces is normal. Furthermore, \omega_1 can be embedded as a closed subspace of S=\Sigma_{t \in I} I. Then \omega_1 \times S is homeomorphic to a closed subspace of S \times S. Since S \times S \cong S, the space \omega_1 \times S is normal.



  1. Nogura, T., Tightness of compact Hausdorff space and normality of product spaces, J. Math. Soc. Japan, 28, 360-362, 1976
  2. Steen, L. A., Seebach, J. A., Counterexamples in Topology, Dover Publications, Inc., New York, 1995.

\copyright \ 2015 \text{ by Dan Ma}

An exercise gleaned from the proof of a theorem on pseudocompact space

Filling in the gap is something that is done often when following a proof in a research paper or other published work. In fact this is necessary since it is not feasible for authors to prove or justify every statement or assertion in a proof (or define every term). The gap could be a basic result or could be an older result from another source. If the gap is a basic result or a basic fact that is considered folklore, it may be OK to put it on hold in the interest of pursuing the main point. Then come back later to fill the gap. In any case, filling in gaps is a great learning opportunity. In this post, we focus on one such example of filling in the gap. The example is from the book called Topological Function Spaces by A. V. Arkhangelskii [1].



The exercise we wish to highlight deals with continuous one-to-one functions defined on pseudocompact spaces. We first give a brief backgrounder on pseudocompact spaces with links to earlier posts.

All spaces considered are Hausdorff spaces. A space X is a pseudocompact space if every continuous real-valued function defined on X is bounded, i.e., if f:X \rightarrow \mathbb{R} is a continuous function, then f(X) is a bounded set in the real line. Compact spaces are pseudocompact. In fact, it is clear from definitions that

    \text{compact} \Longrightarrow \text{countably compact} \Longrightarrow \text{pseudocompact}

None of the implications can be reversed. An example of a pseudocompact space that is not countably compact is the space \Psi(\mathcal{A}) where \mathcal{A} is a maximal almost disjoint family of subsets of \omega (see here for the details). Some basic results on pseudocompactness focus on the conditions to add in order to turn a pseudocompact space into countably compact or even compact. For example, for normal spaces, pseudocompact implies countably compact. This tells us that when looking for pseudocompact space that is not countably compact, do not look among normal spaces. Another interesting result is that pseudocompact + metacompact implies compact. Likewise, when looking for pseudocompact space that is not compact, look among non-metacompact spaces. On the other hand, this previous post discusses when a pseudocompact space is metrizable. Another two previous posts also discuss pseudocompactness (see here and here).


The exercise

Consider Theorem II.6.2 part (c) in pp. 76-77 in [1]. We do not state the theorem because it is not the focus here. Instead, we focus on an assertion in the proof of Theorem II.6.2.

The exercise that we wish to highlight is stated in Theorem 2 below. Theorem 1 is a standard result about continuous one-to-one functions defined on compact spaces and is stated here to contrast with Theorem 2.

Theorem 1
Let Y be a compact space. Let g: Y \rightarrow Z be a one-to-one continuous function from Y onto a space Z. Then g is a homeomorphism.

Theorem 2
Let Y be a pseudocompact space. Let g: Y \rightarrow Z be a one-to-one continuous function from Y onto Z where Z is a separable and metrizable space. Then g is a homeomorphism.

Theorem 1 says that any continuous one-to-one map from a compact space onto another compact space is a homeomorphism. To show a given map between two compact spaces is a homeomorphism, we only need to show that it is continuous in one direction. Theorem 2, the statement used in the proof of Theorem II.6.2 in [1], says that the standard result for compact spaces can be generalized to pseudocompactness if the range space is nice.

The proof of Theorem II.6.2 part (c) in [1] quoted [2] as a source for the assertion in our Theorem 2. Here, we leave both Theorem 1 and Theorem 2 as exercise. One way to prove Theorem 2 is to show that whenever there exists a map g as described in Theorem 2, the domain Y must be compact. Then Theorem 1 will finish the job.



  1. Arkhangelskii A. V., Topological Function Spaces, Mathematics and Its Applications Series, Kluwer Academic Publishers, Dordrecht, 1992.
  2. Arkhangelskii A. V., Ponomarev V. I., Fundamental of general topology: problems and exercises, Reidel, 1984. (Translated from the Russian).


\copyright \ 2015 \text{ by Dan Ma}